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Reflecting diffusions™

S. Ramasubramanian

Probabilistic models of diffusion processes with ‘reflecting boundary conditions’ are discussed;

the domains considered can be nonsmooth.

THE phenomenon of diffusion in free space (in a dilute
solution) can be modelled in a mathematically rigorous
fashion by probabilistic methods; in fact, this has been
one of the major achievements of probability theory.
This has led to a very fruitful interaction between the
theory of partial differential equations and the theory of
Markov processes; the interface 1s now known among
probabilists as the theory of diffusion processes]"s.

The aim of this exposition is to indicate how probabil-
istic methods are applied to model diffusions with
‘reflecting boundary conditions’. To keep the length of
the article within reasonable limits, we do not consider
asymptotic properties, connections with boundary vatue
problems, etc. And for the same reason it is inevitable
that we indulge in a bit of probabilistic jargon without
explanation; see refs 1, 3,6-8 for more information
concerning unexplained technical terms like submartin-
gales, Markov property, stochastic integrals, . ..

Diffusions in &*

We now briefly review three ways of modelling diffu-
sion processes in R“. This will help the reader appreci-
ate the approaches taken later to study retflecting
diffusions. Our notation will also get fixed in the pro-

Cess.
[et the operator A be defined by

d 5 d
W)=~ Y a,0 L2y b2, )
1,7=I T =l :

where the coefficients a,, b, are sufficiently smooth
real-valued functions on &Y A is assumed to be uni-
formly elliptic; b(-) is the infinutesimal drift and a(-) the
infinitesimal dispersion.

Semigroup approach

Let p(s,x;4,2),0€s<!,x,Z2€ R denote the (minimal)
fundamental solution for the Fokker—FPlanck equation
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i,
a_?(;, z) = Alu(t,z), t>0, ze R4, (2)

where A* s the formal adjoint of 4, and the subscript z
denotes differentiation in the z variables; that is, if the
initial value (0, )=f() 15 specified then u can be
given by

ut,) =L@ =[  fGOpOxtL)d. ()

Since the concentration of a diffusing species satisfies
the Fokker—Planck equation, knowledge of p determines
the system completely once the initial concentration is
known,

It can be shown that p(s, x; ¢, -) is a probability den-
sity  function, satisfies the so-called Chapman-—
Kolmogorov equation, etc.; in other words, p is a transi-
tion probability density function (in the sense that
p(s, x; t, z) dz gives the probability that a diffusing par-
ticle starting from x at time s reaches a sufficiently small
neighbourhood of z at time r). Hence, by the theory of
Markov processes, there is a continuous-time Markov
process in R with continuous sample paths for which p
is the transition density. This process can be called dif-
fusion with generator A. As p satisfies the Chapman-
Kolmogorov equation, {7;": ¢ 2 0} given by eq. (3) torms
a semigroup of operators. This is the classical approach
to diffusions, pioneered by Kolomogorov and Feller,
and depends on PDE theory for the guaranteed existence
of the fundamental solution.

If a()=(dxd) identity matrix, 5&( y=0, then
A =(1/2)A=A*, eq. (2) Is the heat equation, p is the
heat kernel and the corresponding diffusion is, of
course, the standard Brownian motion (this explains the
fondness for the factor 1/2 in eq. (1) among probabil-
ists!). This has been the protoiype of diffusion and cor-
responds to the motion of a diffusing particle purely due
to fluctuations caused by bombardment by solvent par-
ticles in the absence of external forces, friction, ete..

SDE approach

Levy had suggested that the motion of a diffusing parti-
cle can be represented, in differential form, by

dY () = o(Y(NdB() + (Y (1)) dt, (4)
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where o(x) is a matrix such that o(x)o*(x) = a(x), {B(1):
t > 0} is a standard d-dimensional Brownian motion.
The idea is: in a short interval of time the diffusing par-
ticle behaves locally as a Brownian particle with appro-
priate ‘standard deviation' o subject to an “infinitesimal
drift’ b. However, it is well known that the Brownian
trajectories are nowhere differentiable. It has been a
seminal achievement of K. Ito to give meaning for inte-
grals of the form | £(s, w) dB(s, w) for a large class of
processes f; such integrals are called Ito integrals. Then
the formal differential expression (4) can be interpreted

as the stochastic integral equation
f t
¥(t) = Y(0) + jo o (Y(s)) dB(s) + _[0 b(Y(s)) ds. (5)

When o0, b are Lipschitz-continuous and satisfy certain
growth conditions, it was shown by Ito (essentially by
Picard’s iteration) that eq. (5) has a unique solution Y(-);
also the solution Y is a continuous Markov process. If ¥
has a sufficiently smooth transttion density p, then 1t can
be proved that p is the minimal fundamental solution for
eq. (2)- Thus, the solution of the srochastic differential
equation (4) can be called> ? diffusion with generator A.

When d=1, a=1, b(x) =~- Bx with > 0, we get the
Ornstein—Uhlenbeck process.

Martingale problem

An important feature of Ito integrals is Ito’s formula for
transformation of variables: for any f e CZ(R9),

FO) = FYO) - [ A7 (¥(s) s

= [ {(o(NVf (¥(), dB(s)). (6)

If o i1s bounded, the Ito integral on the right-hand side
of eq. (6) 1s a martingale.

Since Y is a continuous process it induces a distri-
bution (probability measure) on the path space
2 =C([0, o) : R ) = the space of R%-valued continu-
ous functions on [0, o). Denote this distribution by P,,
where x represents the starting point (that 1s, Y(0) = x).
Let X(t, w)y=0Xt), t20, we 2. Then eq. (6) can be
expressed as

fX@)= ()~ [ AF(X(s) ds = P, — martingale (7)

for any f e C}(R4).

The above can be used to characterize a diffusion
process. The point of view taken is that the family
{P,:xe R’} of probability measures on {2 contains all
relevant information about the diffusion process. In their
fundamental work Stroock and Varadhan'' have shown
that, If a, & are bounded, continuous, then for each x
there is a unique P, such that eq. (7) holds for any
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f € CZ(RY); also under {P;} the coordinate projections
(X().:t20}) form a continuous Markov process.
Moreover, if the coefficients a, b are sufficiently smooth
then {P,} agrees with the distribution of diffusion as
defined earlier. Thus, the family {P,:x e R?} of prob-
ability measures solving the martingale problem given
by eq. (7) can be called diffusion process corresponding

to 4.
One may consult refs 3, 9, 11 concerning the advan-

tages of the various approaches.

Two models

Insulated heat conduction

The problem of heat conduction in a semi-infinite bar
(of uniform cross-section) with the end kept insulated is

described by

ou 1 22u
'51._(!: Z) =

3 9,2 t>0, z>0 (8)
Z

(1, 2),

subject to the boundary condition

%(:, 0)=0, t>0. (9)

This is the one-dimensional heat equation with the
Neumann condition at z=0. Equations (8) and (9) de-
scribe also the concentration of a species undergoing
Brownian movement (confined to [0, ¢0)) in a dilute
solution when no mass is allowed to ‘escape through’ O
or to ‘linger at’> 0. It is well known that the fundamental

solution for the above is given by

]
Q(S: X5 1, Z) =:/2-Tl',(f-‘.5‘“)_

X [ex;a{ (z~x)° > + exp{

2(tjs) J
for0<s<¢,x20,z210.

By arguments analogous to those presented earlier, 1t
can be shown that there is a Markov process (living in
[0, =0)) with g as its transition probability density. This
process may be called reflected Brownian motion
(RBM). If {B(#)} is a one-dimensional Brownian motion
(in &), then it is easily seen that {|B(#)|:#20} is a
Markov process with ¢ as its transition density; that is,
{4 B(1}{:t 20} 1s RBM.

(-2 - x)? } (10)

2(f - 5)

-

An inventory model

Consider the following model in queueing theory:
Z(1) = B(0)+ 1(1) - [O(t) - L(1)] = B(t) + L(1),
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t 2 0, representing the inventory process Z in a simple
two-stage flow system consisting of input (or produc-
tion), output (or demand) and an intermediate buffer
storage of infinite capacity. Here I(f) = cumulative input
up to ¢; O() = cumulative potential output (or demand)
up to ¢, /(0) = O(0) = 0 and B(0) = 0 is the initial inven-
tory level. It is assumed that the demand that cannot be
met from the stock on hand is lost with no adverse effect
on future demand; thus, L) can be interpreted as the
demand that could not be met up to ¢, and O()—L{7)
is the actual output over [0, t]. Clearly, Z(¢) 2 0. All
are assumed to be continuous stochastic processes;
L is called lost demand process and B the netput
process'”.

Under certain conditions of heavy traffic, {B(f)} can
be modelled by one-dimensional Brownian motion: viz.
(a) in any short time interval [#1, £2], the input I(£,)—I(t;)
and the output O(£,)-0(¢;) are quite large but their dif-
ference (netput) B(s)-B(#;) 1s not large; (b) netput in-
crements over nonoverlapping intervals are approxi-
mately independent.

With these assumptions the set-up (11) becomes

Z(t) = B(t) + L(1), t >0, (12)

satisfying (i) Z(¢t) 20, Z is continuous in ¢, (i1) Z(0) =
B(0) = 0, (iii) L(0) =0, L is nondecreasing and continu-
ous in ¢, (iv) L increases only when Z =0, (v) {B(#)} 1s a
Brownian motion.

A look at the above indicates that a ‘deterministic
version’ of eq. (12) with the attendant constraints is
meaningful. To determine z and / such that

(1) = ae(t) + I(), 120, (13)

subject to (i)’~(iv)’, where (i)™—(iv)” are the same as (1)-
(iv) with {, z, o replacing, respectively, L, Z, B, and (v)
o ) is a continuous function. (Here « is the known
function). For a continuous function o on [0, o2} with
o(0) > 0 the deterministic problem is solved uniquely by
taking

I(t) = ~ inf{a(s) A 0:0 < s < £} (14)

and, of course, z(¢) = a(t) + I(f). A hard stare at Figure 1
will convince the reader!

Consequently, the stochastic problem can also be
uniquely solved path by path. This problem is calied
Skorohod problem and eq. (12) is called Skorohod

equation.

The connection and the consequences

What do the above-described models have in common?
According to Levya, practically everything!
{1B()|:t=20} and {Z(s):120}, being continuous
processes, induce corresponding distributions in the path
space C([0, o) : &). Levy has shown that these distribu-
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Figure 1.

tions are identical if the initial values agree. This sur-
prising result is proved’ by showing that Z is a Markov
process with transition density g given by eq. (10). It
may be noted that Levy arrived at this result purely by
studying the sample path properties of Brownian
motion, without any queueing theoretic considerations.

Since L increases only when Z is on the boundary, L is
called the boundary local time of Z. Local time process is
one of the most esoteric objects associated with Brownian
motion; in a sense high irregularity of Brownian paths
makes the local time a reasonably well-behaved entity’.

To indicate how the local time and transition density
are tied up, we consider the RBM in the half-space
D={xe R x; 2 0} with reflection in the inward nor-
mal direction; note that the inward normal derivative 1s
just 8/dx; at the boundary.

Let {(Bi(2), Bx(D), .., Ba(t)) :t =20} be the d-dimen-
sional Brownian motion iIn R*? (without any boundary
condition). From the preceding discussion RBM in D
with normal reflection at the boundary can be repre-

sented as

Z, () =B+ L), Z,(t)= 5, (1), i=2,....d, (15)
where L(f) = — inf{B,(s) A 0: 0 £5 <1}. Also the transi-
tion probability density is given by
(16)

where 0<s<t, x=(x, X2, .-, X)=(x, X)) €D, z=
(z1, 23, - -, Z4) = (21, )€ D, q is given by eq. (10) and r
is the (d-1)-dimensional heat kernel. Using the Ito cal-
culus and integration by parts it can be shown that

{
E, [ [, 82y dL(r)

p(s, x; 1, 2z) = q(s, x); £, zy) r(s, % t,2),

= 1/] 820, x; @,2) do(z) da (17)

for any x € D and bounded measurable function g on
oD; here do(-) denotes the surface area measure on the
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boundary (in this case, (d-1)-dimensional Lebesgue
measure) and £, denotes taking expectation under the
condition £(0) = x.

The case of smooth domains

The importance of the Skorohod equation is that it sug-
gests how reflecting diffusion can be represented as a
solution of a stochastic differential equation. Also one
may consider reflecting directions other than the normal
direction. and possibly depending on x € dD.

Let D be a domain with smooth boundary and y(-) a
smoothly varying vector field on dD; assume that { y(x),
n(x)) = B> 0, x e 3D, where n(x) is the inward normal.
Reflecting diffusion in D with generator A and reflecting
field y can be defined as the process {Z(1)} satisfying

2(t) = 2(0)+ | 0(Z(5)) dB(s)

t f

+] B(Z() ds + | 7(2(s)) dE(s) (18)
such that £(0)=0, & is a continuous, nondecreasing
process, £ increases only when Z is on the boundary, and
Z(tye D for all ¢t. This formulation is due to Watanabe”.
Note, however, the difference between eqgs (4) and (18);
in eq. (4) there is only one unknown process where (18)
involves two unknown processes Z and &. It can be
shown that eq. (18) has a unique solution which is
Markov. In addition, if Z has a sufficiently regular
transition probability density p then

%—i—’-(s. x; 0, 2)+ A p(s, x; 1, 2) = 0(t — 5)0(= — x),

s<t, xeD

(19)

(r(x), Vs p(s, x;1,2)) = 0, x €D (20)

for fixed ¢, z. (Observe that eq. (19) is the adjoint of the
Fokker—Planck equation, known as the backward Kol-
mogorov equation.) In such a case the analogue of eq.
(17) also holds. It may be noted that the notion
‘reflecting direction’ is justified mainly in view of eq.
(20). As the sample paths of a diffusion process are no-
where differentiable, it 1s meaningless to say that a tra-
jectory gets reflected in a particular direction; however,
the boundary is ‘reflecting’ in the sense of Markov
processes, viz. the sample path does not linger on the

boundary and it is instantaneously returned to the inte-
rior.

Submartingale problem

As in the case of diffusion in Ed, reflecting diffusions in
smooth domains can also be characterized as solutions
of ‘submartingale problem’, a development due to
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Stroock and Varadhan'® once again. That 1s, for each

xe D we seek a probability measure P, on the path
space such that

(i) P(X()eD V20, X(0)=x)=1,

(i1) foreach f e Cg(ﬂ’d) with (y, Vf) =0, on dD,

JX()~ f(x) - j{; Af(X(s)) ds = P, — submartingale,

(21)
where X is as defined earlier. iIf @, b are bounded, con-
tinuous and ¥y bounded, Lipschitz-continuous, then the
submartingale problem has a unique family {P,:x € D}
of solutions; in such a case, under {P,} the coordinate

projections {X(7)} form a continuous Markov process
and

E x[.[o I (X (5)) dsil =0, xe D, (22)
where E; denotes the expectation with respect to P,; eq.
(22) means that the time spent on dD is zero. When
a, b, v are sufficiently smooth, {P,} agrees with the dis-
tribution of the reflecting diffusion. Thus, we have an-
other way of looking at reflecting diffusions: the family
{P..x € D} of probability measures solving the above
submartingale problem can be called'® the reflecting
diffusion process corresponding to A4, v.

Another inventory model

Consider the three-stage flow system (also called the
tandem buffer system) outlined in Figure 2. Each buffer
satisfies the earlier assumptions. Here /() = cumulative
input into buffer 1 up to 7, /5(¢) = potential transfer from
buffer 1 to buffer 2 up to = potential output from
buffer 1 (potential input into buifer 2) up to ¢
I3(¢) = potential output from butfer 2 up to ¢. The netput
process (B, By) is defined by

By(t) = By(0) + I (1) — 15 (1),
B,(£) = By (0)+ 1, (¢) — I5(¢).

Let Z,(f) = content of buffer i at time ¢, i = 1, 2. We may
write Z,(6) = Bi(t) + L(t), where L,(¢) = amount of po-
tential output lost up to ¢ because of buffer 1 being
empty. Consequently, /5(f) — L(f) = cumulative input
into buffer 2 up to . Therefore, applying a similar ar-
gument to buffer 2 we get Zy(¢) = By(f) — Li(t) + La(1),
where Lo(f) = amount of potential output lost up to ¢ be-
cause of buffer 2 being empty. Clearly, Z, 2 0.

(23)

— [ Buffer 1 |———— [ Bufie 2 |—>

Figure 2.

CURRENT SCIENCE, VOL. 69, NO 3, 10 \UGUST 1993
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In the case of heavy traffic, when the netput process
can be assumed to be a two-dimensional Brownian
motion {(B(¢), By(#))}, the above suggests the problem:

to find continuous processes Z=(Z,, Z;), L=(Ly, L>)
such that for 7 2 0,

Zi(t)=B(£)+ Li(r) 20,

Zy(r) = By (1) — Ly(0) + Ly () 2 0, (24)

with Z,(0) = B(0) 2 0, L, continuous, nondecreasing; L,
increases only when Z, =0, i=1, 2. Note that Z takes
values in the positive quadrant {(zy, z5): z1 20, z2 2> 0};
the “direction of reflection’ on the boundary {z, = 0} is
the normal direction, whereas on {z; =0} it is the
‘diagonal’ direction (-1, 1).

The above model is due to Harrison'” and has given a
lot of impetus to the study of reflecting diffusions in
nonsmooth domains, especially to RBM in quadrant,
wedge, orthant, etc. with obligue reflection at the
boundary. Mathematical interest is due to the presence
of corners and the reflecting direction field having
‘discontinuity’, and the consequent nonavailability of
suitable results from the theory of partial differential
equations. Here ‘discontinuity’ is to be understood as
the difference between the reflecting direction and the
normal direction being discontinuous.

Normal reflection in nonsmooth domamns

What is meant by normal direction at a boundary point
when the boundary is nonsmooth? Following Tanaka'>
and Lions and Sznitman'4, Saisho'> has taken the ap-
proach given below.

For a domain D, xe dD, r>0, put N{x, r)=
e RY (n|=1, Blx—rn,r) " D=0}, where B(y, r)
denotes the ball with centre y and radius »; the set

NE)=U,s o9 N(x, r). N(x) is defined to be the ses of

all inward normal unit vectors at x.

If 9D is smooth at x, than N (x) = {n(x)}. When D 1s
the positive quadrant, N((0, 0)) = {(x1, x2) 1 x 20,
x22 0, x}+x3=1. Let D={(-1,0)x(-1, 1)}V
((0, 1) x (-1, 1)}; that is, D is a rectangle with a ‘fibre’
removed: note that for any x on the fibre N (x} = O.

tf D satisfies a uniform exterior sphere condition then
N(x) = O for x € dD; for such domains the determinis-
tic Skorohod problem can be formulated as follows: Let
x e C([0, o) Rd) with a(0)e D. Find a pair of con-
tinuous functions z, & such that

(1) = o)+ k(t) € D, k(t) = I;n(s) dik|(s), (25)
where | k |(¢) is continuous, nondecreasing, and Increases
only when z is on the boundary 9D, and r(s) € N(z(s))

if 2(s) € dD. Note that k is 8 -valued and is of bounded
variation in every bounded interval.
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Under a further technical assumption which may be
called a uniform interior cone condition, it has been
shown by Saisho', based |

wi {3 aisho ', based on the work of Lions and
Sznitman ™, that a unique pair of solutions exists for any ¢

Moreover, if o, b are bounded, Lipschitz-continuous,
Z(0)e D, and {B(f)} is a d-dimensional Brownian mo-
tion, then there exist unique continuous processes

{Z(8)}, {K(D)} such that Z is D-valued, K is &Y -valued
with bounded variations,

Z(t) = Z(0) + j{: o(Z(s)) dB(s)

+[ 6(Z(s)) ds+ K(, (26)

K(1) = J n(s) dIKI(), @7)

where | K |(f) is a continuous, nondecreasing process,
and increases only when Z is on the boundary, and
n(s) € N(Z(s)) if Z(s) € dD. The process Z may be
called reflecting diffusion in D with generator 4 and
normal reflection at the boundary”"”.

If Z 1s a quadrant/rectangle/orthant, o = identity
matrix, b =0, then RBM with normal reflection can be
easily got from the d-dimensional Brownian motion by
the method of images; in such a case Z constructed

above agrees with RBM in law.

RBM with oblique reflection

Heavy-traffic approximation in queueing theory has led
in recent years to an intensive study of RBM in domains
like quadrant/wedge/orthant with oblique reflection. Not
much is known about other diffusion processes; and
even about RBM the last word is not said. We will con-
fine ourselves to a brief discussion of RBM in a wedge;
because of the ‘discontinuity’ at the corner, there are a
few surprises around the corner!

Let D denote the wedge with angle &; 9.0, 92D are the
two sides of the wedge. We assume that the direction of
reflection is constant on each side. Let v, denote the re-
flecting direction on 9, D, 6, denote the angle v; makes
with the normal, i =1, 2 (8, is taken to be positive if v,

points towards the corner) (Figure 3).

BI'D

Figure 3.
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In their fundamental paper Varadhan and Williams '

defined RBM in a wedge as the solution to the following
submartingale problem. Let 3 be the collection of all
smooth functions f on & such that f is constant near
(0. and {v,, V/)20o0n 9,D, i=1,2. Let £, X be as
before. A family {P x e D} of probability measures on
€2 is a solution to the submartingale problem corre-
sponding to ((1/2)4. vy, v2) if the following hold for

o
-

each xe D

(i) P(X(t)YeD Vt20, X(0)=x)=1;

(11) foranyfe &
FXE) - ()= [ 5 A (X(s)) ds

= P, — submartingale; (28)

(iii) E, J'G Ty (X(s)) ds = 0, (29)
where A =a32/{ +9%/x3. Set(6, + 6,)/&. The parame-
ter a determines crucially the behaviour of the submart-
ingale problem'®, viz.:

(a) a<0. There 1s a unique solution to the problem,
and the corner 1s never visited.

(b) 0 < < 2. There 1s a unique solution, The process
hits the corner with probability one, instantaneously
[eaves the corner.

(¢) a=2. There is no solution satisfying (i)—(iii) above.
However, for each x € D there is a unique P, satis-
fying (i) and (i1); this P, is supporied on those paths
which reach the corner and terminate there; that is,
the process is absorbed at the corner.

Note that if 8,=0, i =1, 2, we have the case of normal
reflection, and the solution of the submartingale prob-
lem 1s the distribution of the process considered in the
previcus section with, of course, o= identity matrix,
b=0.

The condition o> 0 roughly means that there 1s a net
push towards the corner. In such a case the corner is hit,
and if the push 1s beyond a critical level (viz. ¢ 2 2), the
corner becomes an absorbing barrier! This is a surpris-
ing development as diffusions in RY and in smooth
domains (with 4 2 2) do not hit any specified point.

Proof of the result of Varadhan and Williams'® centres
around the function
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r® cos{(a@—6,), a=z0,

o = 0, (30)

G(r, 0) = {

log r +6tan 64,

which is the function (in polar coordinates) satisfying
AG=01in D, (v,, VG) =0o0nd, D\{(0,0)},i=1, 2.

Another surprising result, due to Williams'’, is that
RBM in a wedge (that is, the solution of a submartingale
problem) cannot be realized as a semi-martingale for
l< x< 2; in other words, representation in terms of a
stochastic differential equation (s.d.e) is not possible!
This again is in contrast with diffusions in & or in
smooth domains,

It may be mentioned that when D = quadrant, 6, > 0,
i=1,2, 6,6, <1, Harrison and Reiman'>*'’ have con-
structed RBM as the solution of an s.d.e by considering
a modified Skorohod problem. Of late there has been
considerable interest concerning the Skorohod problem
with oblique reflection in nonsmooth domains.

For more information about RBM with oblique re-
flection the interested reader may refer to the forthcom-
ing survey article by Williams'”.

1. Bhattacharya, R N. and Waymire, E. C., Stochastic Processes
with Applications, John Wiley, New York, 1992

2 Freidlin, M., Functional Integration and Pariial Differential
Equations, Princeton Univ Press, New York, 1985.

3. Karatzas, 1. and Shreve, S. E., Brownian Motion and Stochastic
Calculus, Springer, New York, 1991

4 Taira, K, Diffusion Processes and Partral Differential Equa-
:ions, Academic Press, New York, 1983,

§ Varadhan, S R S, Diffusion Problems and Partial Differential
Eqguations, Narosa Publishing House, New Delht, 1980

6. Feller, W, An Introduction to Probability Theory and 1ts Appli-
cations, Wiley-Eastern, New Delhi, 1971, vol 2

7 Karlin, S and Taylor, H M., A First Course in Stochastic Proc-
esses. and A Second Course in Stochastic Processes, Academic
Press, New York, 1981.

8 Van Kampen, N G, Stochastic Processes in Fhaysics and
Chemistry, North-Holland, Amsterdam, 1992.

9 lkeda, N and Watanabe, S, Stochastic Differential Equations
and Diffusion Processes, North-Holland/Kodansha, Amster-
dam/Tokyo, 1981,

10. Stroock, D. W. and Varadhan, $§ R. S, Commun Pure Appl
Math , 1971, 24, 147-2235

11. Stroock, D. W. and Varadhan, S R. S, Multidimensional Dif-
fusion Processes, Springer, New York, 1979

12. Harnison, J. M, Brownian Motion and Stochastic Flow Systems,
John Wiley, 19835,

13 Tanaka H, Hiroshuma Math J, 1979, 9, 163-177.
14. Lions, P. L. and Sznntman, A, Commun. Pure Appl Maih
1984, 37, 611

15 Saisho, Y., Probab Theor. Rel. Fields, 1987, 74, 455-477

16 Varadhan, S R. § and Williams, R 1, Commun Pure App!
Math , 1985, 38, 405-443

17 Wilhhams, R. 1., Semimartingale reflecting Browntan motions 1n
the orthant, Preprint, 1995

CURRENT SCIENCE, VOL. 69, NO 3, 10 AUGUST 1995



