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It is shown that the formal consistency of a locally
diffusive motion on the metallic side of the mobility
edge for a disordered system with the Schrédinger
equation implies a minimum metallic diffusivity
D ., = i/2m. Its implification for the physics near
the mobility edge is discussed.

METALLIC conductivity & implies diffusivity D through
the Einstein relation for the degenerate electron system,
namely, ¢ = ¢°’DN, . For a quench-disordered conductor,
this poses the question of formal consistency of the
diffusive equation for the probability density with the
Schrodinger equation for the probability amplitude. In
what follows we address this question and find the
surprising  result that a necessary condition is

o = R 2m.

Consider a phase space wave packet initially localized
around the ongin and constituted from the extended
€nergy eigenstates close to the Fermi energy (counted
as zero of energy) which is taken o Jie just en the
metallic side of the mobility edge for the quench-
disordered system.

Rewrite the Schrodinger equation for the wave packet

\.]!(I,I) — R(x,t)ﬂ‘w"t} = pOx. 1) +i1Bx. 1) (I)
as
at ~ 2m R (
along with the continuity equation
op kK
S VeV =0 3)
with p = w*y.

Now, we would like the continuity equation for the

probability density to converge asymptotically to the
diffusive form

P _ Hve
ar-DVp_ (4)

Comparing egs. (3) and (4), we at once get a condition
for this to be so in terms of o and B, which is

2m VP = DYV (5)

assuming Yo to be irrorational.
We now substitute in eq. (2) from eq. (5) and rearrange
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o get

2
. 0B P oo, B4, (B )
T e DML T 2mD (VY ©

Now, averaging over the disorder V and noting that
odd-symmetric quantities, ie. (P) = V2(B) = (V) = 0,
while {((VP)*) # 0, we necessarily have

7 )
D = ( . (7)
m )
Here, of course, we have regarded D as a self-averaging
quantity, This is reasonable as we know that on the
metallic side of the mobility edge in three dimensions

the conductance fluctuations are universal (~ ¢2/A), but

the conductivity fluctuation is ~ (¢*/k) (1/L) and, there-
fore, vanishes in the infinite sample size (L) limit. We
must noteé that our sample size L is always taken to
be essentially infinite (>> any correlation length € that
may exist as we approach the mobility edge). This
ensures that we are always in the local diffusive regime
in that the mean-squared displacement grows linearly
n time as 20r, For L <E, the diffusion constant itself
can, of course, be L-dependent. This is, however, quite
different from the anomalous diffusion, where the mean-
squared displacement does not grow linearly with time.
Further, we have insisted on the local diffusion equation
(4) and this forces us physically to the limit when the
mean free path equals the microscopic length — the Fermi
wavelength ~ the lattice discreteness. The latter implies
that we should be closest to the mobility edge, but on
the metallic side. Thus, 7/2m is to be taken as the
minimum possible value of D to ensure local diffusion.
As to the general conceptual question of how diffusion
of an initially localized wave packet may come out of
the Schrodinger equation with quenched (static) disorder,
we consider the following. Of course, in the static
random potential there is no dissipation and hence no
irreversibility that one normally associates with the
nelastic (incoherent) scatterings. Indeed, in the strictly
fine-grained sense there is no irreversible diffusive spread
of the electron wave packet, and eq. (3) is time-tever-
sal-symmetrm {(r.e. under t—>—~1¢ and ¢ — — ¢). This old
problem’ is the same as that discussed recently by Imry*
in the context of the nonzero real part of the dc
conductivity. The point is that for the extended states
the level spacing scales to zero as the system size tends
to infinily, i.e. the poles produce a cut. Then arbitrarily
small level broadening will ensure the phase-mixed-
upness Of the otherwise pure state and thus ensure
irreversibility in the long-time limit. This is really an
analogue of the collisonless Landau damping! Indeed,
Mott and Kaveh’ have discussed the diffusion equation

as arising from the Schrédinger equation for a disordered
system.
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The above derivation strongly suggests that there exists
a mimmum metallic diffusivity D__ having a untversal
value %/2m whenever a mobility edge 1s known to exist,
The question now is whether or not this implies a
minimum metallic conductivity® o_ through the Einstein
relation ¢ = e’DV.. This brings us to an oft-stated but
seldom proven theorem®, namely, that the localized states
cannot coexist with (be at the same energy) as the
extended states. And this notwithstanding the well-known
counterexamples of the Wigner-von Neumann construc-
tion of such states®. The latter seem to be dismissed as
nongeneric. If the coexistence is denied, the N, on the
metallic side of the mobility edge counts the total
density of states (there being no coexisting localized
states) and then D_ =#/2m would imply a
o, =eD__N_. In this connection it is worth noting
that the ultrathin films of Bi on Ge substrate show’ a
limiting normal metallic conductivity of 4e*/h (cor-
responding to a sheet resistance ~ 6.5 kQ2/00) for the
separatrix dividing the insulating and the superconducting
phases at 0 K. This may well be associated with the
preexisting local electron pairs where the correlated
motion of the pairing electron escapes the tyranny of
two-dimensional (2D) localization. Now, it is interesting
that our universal D =7%/2m, along with N_=(m/nh?)
for d=2 does indeed give o2 =4e’/h. We would like
to call it the 62° of Mott recovered through delocalization
Dy pairing in two dimensions. This may be the case
for all insulator-superconductor transitions with a nor-
mal-state separatrix for the ultrathin films.

There is, however, the question of the fine structure
of the mobility edge for d=3, where the conductivity
1S experimentally believed to vanish continuously® at
the mobility edge in a narrow critical region with a
critical exponent s. How is this consistent with
D,.#0? A possible solution consistent with D__#0 is
to assume that NF=NF(localized)+NF(extended). What
then enters the Einstein relation is, of course, the
Ne(extended), which can vanish at the mobility edge
keeping the total N, continuous and noncritical, as is
known to be the case. It is not clear how this two-spectral
fluid hypothesis®, i.e. Ni(E)=N.(localized) + N (exten-
ded), really differs from the asymptotic form of the
resonance-like wave function in three dimensions ad-
duced by Kaveh and Mott’. Such quasilocalized resonant
states are strongly suggested by some recent works'® .
We think that a proper discussion on this point is yet
to take place.

Finally, two technical remarks are in order. First, the
validity of our eqn. (5) at any point x demands that x
nat be a node where Y(x) vanishes. But this condition
is naturally obeyed by all diffusive states, Indeed, vanish-
ing  of y(x) would imply  vanishing of
p{x) = y*¥(x) w(x), which is ruled out by the fact that
p(x) is requested to obey the diffusion equation (3).
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The second point concerns the absolute value 4¢*/h for
the sheet conductance of films referred to in the text,
l.e. for Bi films on Ge. The point is that the effective
band mass does not appear in the expression, and the
correction to the density of states due to disorder or
Interaction is cancelled by the vertex correction, at least
perturbatively — the well-known cancellation theorem
valid in the absence of a pseudo gap'’.
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A detailed topographical investigation on the
molecular electrostatic potentials (MESPs) of different
conformers of acetaldehyde, nitrous acid and
hydroxylamine has been carried out at the ab initio
SCFE level using TZ2p, 6-31G* and STO-3G basis
sets. In general, large regions of negative potential
have been observed. An attempt has been made to
correlate these potentials with biological activities of
the molecules. Mutagenic and toxicological properties
appear to be related to the presence of these large
negative zones.

MoLEcuLAR electrostatic potential (MESP) is now an
established tool for the study of the stereoelectronic
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