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chaotic, any two nearby similar trajectories are thrown
apart. This introduces loss of predictability even for the
fow-frequency component.
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Possibility of usage of return maps to
predict dynamical behaviour of lakes:
Hypothetical approach
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In this article, we show how one-dimensional maps
can be wuseful in analysing experimentally the
dynamics of lake systems. We illustrate this by means
of hypothetical lake systems.

ONE of the ways to make a complex system easier to
analyse is by reducing the system to a simple system
that still captures the important features of the original
system. As the theory of one-dimensional (1-D) maps
is well developed in several fields'™, it will be useful
1f an appropriate 1-D map can be constructed from the
system under study. In this communication, we
demonstrate how an approximate 1-D map can be used
to analyse the dynamical behaviour of some simulated
hypothetical lakes. The first-order difference equations
and the general conditions of the water bodies, and the
logistic map analysis for various possibilities are
hypothetically described in successive sections.

A treatise by May' lucidly explained the role of the
first-order ditterence equations, dynamical properties and
bifurcation generations in the application of ‘simple
mathematical models with very complicated dynamical
systems’,

The difference equation can be used for studying a
dynamical system as a water body at different time
intervals. It 1s tepresented as

XH—I = F(X:)‘ (1)
where X, and X | are the populations (pixel population
in water body) of a natural system at time periods ¢ and
t+ 1, respectively. It indicates that output becomes an input
feedback, and hence an iterative process. The following

expression shows the relation between X, and X _:
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XI+2 = F(XHI)' (2)

The magnitude of population at a definite time in a
natural system is related to the magnitude of the popula-
tion in the preceding generation. This can be represented
applying the first-order difference equation X _, =
AX(1-X), or X, =AX-~AX, in which the first
term is linear and the second nonlinear. In this equation
the term A will give an idea about the magnitude of
variation. This equation defines an inverted parabola
with intercepts at X, = O and 1, and a maximum value
of X ,=A/4 at X =05 1f A> 1, itis an indication
that the population growth rate is increasing. The
parameter A gives the entire description of the system.
The steepness of the inverted parabola in the logistic
map depends on A. If A < 1, the population death rate
is said to be increasing. The strength of nonlinearity
explains the temporal changes in the dynamical system.
Till a certain degree of magnitude of nonlinearity, the
growth in areal extent of the water body will be attracted
to the equilibrium stage specific to that level of non-
linearity. For a magnitude range A = 3.57-4, the dynami-
cal system shows chaotic behaviour, revealing that the
arcal extent of the water body is repelling. All the
parameters in the difference equation should be such
as to fix the linear term to between O and 1, and the
strength of nonlinearity' to between O and 4, failing
which the areal extent tends to become extinct. The
graphic analysis explains that the normalized status of
a dynamical system as water body if starting at larger
than 1, it immediately goes negative and becomes extinct
at one time step. Moreover, if A > 4, the hump of the
parabola exceeds I, thus enabling the initial population
near 0.5 to become extinct in two time steps. Therefore,
there is a need to restrict the analysis' to values of
A between | and 4 and values of X, between O and 1.
As the areal extent X, of the water body 1s small (much
less than 1 on a normalized scale, where 1 might stand
for any number such as 1 million km?), the nonlinear
term can initially be neglected. Then the areal extent
at time step (year) t = 1 will be approximately equal
to A X,. Figure 1 shows a logistic model and its essential
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Figure 1. Logistic map and its essential parametens

parameters. The fixed point is the eigenvector (slope),
Ma) = (dF/dX)/X’, of the bisectrix point of 45° line at
X’ and determines the local stability of the fixed point
F(X) = X; fixed point AM{a) < 1 (Figure 1). If the slope
of F at X* lies between 45° and —45°, then Ala) < 1,
and the fixed point is locally attracting. As the slope
steepens beyond —45°, Ala) > 1, and the fixed point
becomes repelling.

Using these return maps, a qualitative understanding
of the dynamics of the logistic maps without performing
any calculations can be done">. It is intended to use
these logistic maps to predict the successive values of
the areal extent in lakes (population of pixels in discrete
space). These logistic maps can be constructed using
the first-order difference equations. The water body
dynamics can be explained through a single logistic
map rather than through conventional algebraic analysis.
By tracing the trajectories, it 1s easy to know how the
water body areal extent fluctuates with time.

As lakes exhibit fluctuations, there is a need to classify
them according to their dynamical behaviour from stable
to unstable to apparently random fluctuations. The mag-
nitude of variation between fixed time intervals is an
important parameter for studying the dynamics of a
particular system. The water body dynamics vary with
time and physiography. Conceptually, the water bodies
which exhibit fluctuations within seasons may also show
variations at annual intervals. This may be confirmed
by approximating lake behaviour within the seasons and
at annual intervals by return maps. The logistic model
approaches the problem of quantifying lake behaviour
from two directions: (1) assessment of external distur-
bances and (i) the rate of change in areal exient.

Therefore, it 1s important to develop a mathematically
derived model for a better understanding of the role of
the significant parameters and their quantification in
terms of decrease in areal extent of lakes. Thus, some
water bodies may behave chaotically; some others are
attracted either to initial conditions or to a fixed point
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- £(a)= dF7dX/ XX (Slope at X*)

(equilibrium stage). The decreasing areal extents of water
bodies when represented in return or logistic maps attract
all the trajectories towards initial status.

The prime reason for retrogression of a natural system
towards initial conditions, say behind X, can be quantified
through logistic maps. This retrogression of a natural
system towards its initial status as exemplified by popula-
tion (natural system) decrease due to deceases (factor)',
can be represented by two aspects in two logistic maps,
one showing population (natural system) decrease and
the other Intensity of decrease or the factor. Similarly,
the areal extents of many lakes and water spread decrease
periodically due to meteoro—geophysiographic conditions.

Fluctuations in areal extents of some water bodies
are very high and hence unpredictable, and stability is
a very rare phenomenon. These fluctuations in water
body areal extent can be quantified by means of logistic
equations and return maps.

This method of deducing the system’s behaviour needs
the following parameters: areal extent at specified time
intervals and the strength of nonlinearity (A). To fit a
logistic map to a set of observations X, X ,..., A
would be estimated by plotting X |, versus X in order
to getthe curve X |, = AX (1 — X)) (personal communica-
tion, May and Lloyd, 1994),

In a return map representing the behaviour of fluc-
tuations of areal extents i1n lakes which are being
eutrophied with time, trajectories are attracted towards
initial conditions (areal extents will decrease with time).
By contrast, in lakes where no fluctuations are recorded,
trajectories will be attracted to a fixed point (stable in
nature).

A natural system like water bodies behave differently
in different seasons. Water bodies represented seasonally
in logistic maps show their pixel population progressing
towards equilibrium and hence trajectories are also at-
tracted towards equilibrium point during monsoon,
whereas during summer the pixel population is attracted
towards initial status. Thus, trajectories may be attracted
towards equilibrium point or they may repel. These
fluctuations can be identified as different levels of the
strength of nonlinearity.

In logistic maps the magnitude of variation or the
strength of nonlinearity (A) between initial and final
values can be represented in terms of X and X |, areal
extents of water body at time ¢ and ¢+ 1. Generally,
the water bodies tend to show changes i1n areal extents
at annual intervals. It X is the imitial value, the changes
during successive years, X ., X ....., X, , can be
determined by temporal evaluation. A simtlar methodo-
logy can be applied for measuring the areal extent
during any specific season (summer, rainy or winter
S€A50NS).

As the strength of nonlinearity of a system eredses,
the behaviour becomes more and more unpredictable.
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The amount of nonlinearity is said to be high when
the ratto between X, and X 15 high. As the variation
in water bodies is a natural phenomenon, occurring
through ages. it is essential to assess its magnitude
in temporal sequence. The highest magnitude of variation
can possibly occur in water bodies (due to many factors)
at specificd time intervals 1 and £+ |, provided the areal
exfent at time f is near zero and that at t+ 1 is at its
equilibrium state. The reverse phenomenon, ie. where
t has a definite value at 7+ 1 becoming zero may also
occur. It 1s essential to fix the parameter representing
the amount of nonlinearity A to between 1 and 4 to
construct the one-dimensional return map and to quantify
the dynamical behaviour of a nonlinear lake system.
For values of A < | the areal extent always decreases
to 0 {as shown for A = 0.92 in Figure 5b). The inter-
section of the parabola with the 45° line at X = O
represents a stable fixed point on the maps. However,
for A > 1 (as shown in Figures 44, 4b, 6a and 6 ¢)
this fixed point becomes unstable. Instead, the parabola
now intersects at X = (A—1)/A, which corresponds to
a new fixed point.

The strength of nonlinearity should always lie between
1 and 4 for representation in logistic maps, all the
natural systems, including water bodies, reaching equi-
librium. Alternatively, two cases exist: (a) if
0 < A <1, the water body is attracted towards initial
conditions and (b) hypothetically, if A > 4, the water
body reaches extinction. The former can also be repre-
sented logistically. Figure 2 shows the strength of non-
linearity (A) of three different hypothetical lakes, 1, 2,
3, where the strengths of nonlinearity A, > A, > A..
Thus, the logistic maps aid in the comparison of lake
behaviour in temporal sequence.

Temporal satellite data are of significant use in studies
on natural systems as water bodies as they show fluc-

tuations conforming to nonlinear mode. They offer synop-

Hypothetic
al lakes

Figure 2. Involvement of the population of water body pixels at
different time penods and its strength of nonlinearity.
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tic coverage revealing the quantitative involvement of
relevant factors and are also available at short time
intervals. The simplified mathematical models based on
the first-order difference equations can be adopted with
remotely sensed data to quantify the lake behaviour.

Different possibilities have been discussed with refe-
rence to hypothetical lakes and their possible behaviours
are also approximated in terms of return maps.

Figure 3 represents different possibilities of water
bodies in different seasons. The magnitude of variation
in Figure 34 is computed considering the water body

YN
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Peak monsoon

Peak Summer

Start of summer

Start of monsoon

Peak Summer Peak monsoon

Start of summer

Not tg scale

Figure 3. Conceptual cycle of water body behaviour of different
regions,
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Figure 4. The return maps constructed by taking the areal extents

from the possibilities given in Figure 3 and the computed strength of

nonhnearity 1nto account. X and X , are populations of the water

bodies at pcak summer and peak rainy season, respectively
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Figure 5. The hypothetical water bodies at time 1 and t+ 1 of two
different years @, the magnitude of variation is > 3 8, and b, magnitude
of vanaton is <1; and ¢, the amount of nonlineanty 1s exactly 2.
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Figure 6. Return maps plotied
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areal extents at peak summer (X) changing via X,
during the advent of monsoon to X ,, at the end of
monsoon. The trajectory during this course is attracted
to a fixed point (Figure 4 a). Reverse course is possible
because of seasonal cycle. The areal extent of the water
body at peak rainy season is X and at peak summer
s X,,, with intermediate X during start of summer;
the trajectories in the return map will be attracted to
initial conditions.

In Figure 3 b, the magnitude of variation is less than
in the first case, as the trajectory is attracted to a fixed
point (X') (stable) (Figure 4 b). In Figure 3 ¢ the amount
of nonlinearity is exactly 1. This indicates that all the
trajectories are attracted to a fixed point (Figure 4 ¢).
Such types of water bodies are very stable in nature.

Figure 4 shows the return maps constructed by taking
the areal extents from the possibilities given in Figure
3 and the computed strength of nonlinearity into account.
X, and X . are the populations of the water bodies at
peak summer and peak rainy season, respectively.

Similar studies can also be carried out at annual
intervals with the help of quadratic maps, to find out
the lake’s behaviour. Figure 5 shows the hypothetical
water bodies at times r and t+ 1 of two successive
years. In Figure 5 a, » and ¢ the magnitude of variations
are assumed as > 3.8, <1 and 2, respectively.

Generally, in eutrophied lakes, areal extent reduces
with time as shown in lakes of Figure 5b. In Figure
5 a, the increase in areal extent is represented hypotheti-
cally. Figure 6 shows the quadratic maps of the areal
extent fluctuations in the model lakes of Figure 54, b
and ¢ due to the given possibilities.

The magnitude of vanation in water bodies is very
high (Figure S a@). Trajectories behaviour, being random,
is unpredictable as shown in the logistic map with
A = 4 (Figure 6 g), whereas in the other logistic maps,
the trajectories are attracted towards initial conditions
(Figure 6 b) and to equilibrium point (Figure 6 ¢), respec-
tively.

If more data over a longer time period, sampled at
more regular intervals, are obtained, the experimentally
constructed return map can be examined by plotting the
data as X,,, versus X, This resembles the logistic map,
in which case such maps can be fitted and used to
make predictions. On the other hand, such a simple
map fails to capture the complexity of the system.

Simple mathematical models like the first-order dif-
terence equations (logistic equations) are helpful in
quantification of seasonal and temporal behaviour of
water bodies. Certain possibilitics with reference to lake
behaviour are illustrated hypothetically in this shott note.
It would be very interesting if the data on changing
areal extents are obtained over a longer time perind,
sampled at more regular intervals to observe the validity
whether or not the logistic model contforms to the
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behaviour of natural lakes. This logistic model approach
will be of use in segregating lakes according to their
behaviour. The accuracy and validity of the logistic
model approach to predict the dynamical behaviour
depends mainly on the computation of the strength of
nonlinearity.
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Petrogenesis and tectonic setting of
Malani rhyolites: Evidence by trace
elements and oxygen isotope composition
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The trace element and oxygen isotope studies of
Malani rhyolites from Gurapratap Singh and Diri
area, district Pali, Rajasthan, indicate rift-related,
within-plate nature of these rhyolites. The rhyolites
have probably been derived by partial melting of
crustal rocks.

THE Malani volcanism marks a late proterozoic tecto-
nomagmatic event over an area of 50,000 km? in western
and southwestern Rajasthan'. The rocks are exposed in
isolated hills and ridges and are characterized by a
preponderance of rhyolitic rocks over the intermediate
and basic rocks. The present communication describes
in brief the results of trace element and oxygen isotope
studies of Malani rhyolites from Gurapratap Singh and
Din area, district Pali, Rajasthan (Jatitude 25°35"-25°40’N
and longitude 73-73°10°E). The study volcanics are
confined to hill ranges running E-W to NE-SW in
semiarcuate fashion and have been extruded on a base-
ment of argillaceous rocks belonging to the Aravalli or
Delht Supergroup.

The rhyolites from Gurapratap Singh and Diri area
are fine-grained/glassy and sparsely phyric'. The
phenocrysts are mainly of plagioclase feldspar and quartz.
The presence of devitrified glass shards, angular
phenocrysts of feldspar and collapsed pumice fragments
indicates tuffaceous nature of these volcanics®, though
a few true rhyolite flows have also becn encountered
in the area.
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Table 1. Major (wt %) and trace element (ppm) analyses, CIPW
norms and oxygen 1sotope composition of Malani rhyolites from
Gurapratap Singh and Din, Pah district, Rajasthan. Major element
data are from Snvastava et al.! (WR - whole rock, Qtz —quartz
rneral separate)

D41 G151 G235 (24
510, 73 08 75.11 7511 76 56
O, 0.2 0.22 017 003
AlLO, 14.85 12.91 14 30 13 44
Fe, O, 1.14 163 1 64 057
FeOQ 0.72 02 012 04
MnO 005 0.03 00t 00t
MgO 0 08 0.2 019 0.19
Ca0O 0.8 [.3 0 85 0.32
Na,O 3.05 27 2.35 055§
K,O 5.0 44 365 7.0
P,O, 0 09 003 0.02 00
LOI 0.8 1.2 0.6 0.0
Total 90 86 99 93 99 01 99 07
Rb 224 220 136 332
Ba 501 402 949 582
Sr 85 63 41 14
Zr 242 196 58 65
Th 28 26 17 18
Y 79 110 65 111
Nb 19 19 s 17
La 56 63 32 29
Ce 139 138 65 47
\'% 5 15 7 6
s 0 2.61WR 9.19Qtz 11.94WR
CIPW norms
q 34 80 39 66 44 10 45 54
or 29.47 2613 22.24 41 14
ab 25.68 22.53 20.96 472
an 3.06 6.39 417 167
c 326 1.33 4 59 4.39
hy 0 46 0.50 050 076
i 1.61 - - 070
hm - 1.60 1 60 ~
tl Q.30 0 50 030 -
ap 023 - - ~
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