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By considering the measurement of a quantum spin
by two different models of the measuring apparatus,
we try to throw some light on the nature of the
apparatus that can perform quantum measurement.
Our scheme is to consider a quantum spin in
interaction with another quantum system playing the
role of an apparatus, which in turn is dissipatively
coupled to an environment. The coupling with the
environment drives the density matrix of the
apparatus to a diagonal form. However, measure-
ment is performed only when the reduced density
matrix of the apparatus contains correlations with
the states of the spin. The two examples considered
here show that this happens when the quantum
apparatus has a well-defined classical limit. If the
apparatus does not have a well-defined classical
limit, the reduced dewnsity matrix of the apparatus is
not correlated with the states of the measured
sysfem.

L — L A P - W —— e —

IN spite of the remarkable success of quantum theory, its
measurement aspect remains a profound interpretational
difficulty. Quantum mechanics, it seems, fails to provide
a natural framework to accommodate our familiar
classical perceptions. At the heart of quantum mechanics
is the state vector |w), a mathematical entity, which
contains all possible information about the system to
which it is attributed. The time evolution of the state
vector is via the Schrédinger equation. However, in
spite of this apparent determinism, a knowledge of |y)
does not ensure a precise knowledge of the ‘observable’
properties of the system, the kind we are familiar with in
the ‘classical’ world, e.g., position, momentum, eic,
These dynamical variables are represented in quantum
mechanics by linear hermitian operators, which act on
the state vector. An operator 4 corresponding to a
dynamical quantity 4 is associated with eigenvalues a,’s
and the corresponding eigenvectors |c), the latter
forming a complete orthonormal set, so that any
arbitrary state vector |y) can be expanded as a linear
superposition of these eigenvectors, i.e., |y) = X, ¢, |a,).
The basic postulate of quantum mechanics is that a
measurement of 4 can yield only one of the eigenvalues
a,, but the result is not definite in the sense that different
measurements for the same quantum state |y) yield
different eigenvalues. Quantum mechanics predicts the
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probability of obtaining the eigenvalue a, to be |c,|*.
This also implies that if the state |y) was one of the
eigenstates |a,), then the result of the measurement is
definitely a,. The general state |y) can well be expanded
in any basis which may form the complete eigenfunction
set of any other ‘observable’, whose observed values
and their probabilities can be calculated similarly. Thus,
we see that the state vector contains familiar ‘classical
properties’ only as ‘potentialities’ which emerge only
when a measurement is performed. Familiar classical
perceplions are only potential outcomes of a measure-
ment on @ quantum system, they are not a part of the
guantum mechanical framework. We now consider the
actual measurement process, in which a system s
brought in confact with an apparatus. This process is
visualized in the following way. The interaction with an
apparatus purporting to measure A4 forces the state |y),
which, in general, is a linear superposition of the
eigenstates {|a,)}, to go into one of the states |q,) and
vield a; as the measured quantity. Clearly, such a
collapse cannot occur if the apparatus i1s aiso another
quantum system, since under those conditions one would
have the unitary evolution of the combined quantum
state of the system and the apparatus. This should again
result in a quantum state which can be regarded as a
superposition of states in any number of ways. This
means that the act of measurement which inevitably
requires a sudden collapse of the state vector to one of
the eigenstates of the dynamical operator falls outside
the realm of quantum mechanics.

There have been several attempts to understand and
explain the measurement processH. Among the earfiest
explanations is the Copenhagen interpretation proposed
by Niels Bohr’, which requires the presence of an
external classical apparatus to cause the ‘collapse’ and
hence a measurement. The theory cannot explain the
actual mechanism of the collapse and the ambiguous
border between “quantum’ and ‘classical’ world makes it
unsatisfactory. The many-worlds interpretation of
Everett' and De Witt’ treats the entire universe as a
quantum system, having one state vector which
‘branches out’ with every interaction. The theory does
away with classical concepts completely and ‘potential
outcomes’ are accommodated by the branches of the
wave function, the observer being conscious of only one
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branch. The theory, however, fails to provide a
convincing answer as to when the branching occurs and
remains highly controversial. The statistical interpreta-
tion® of quantum theory treats the quantum-mechanical
formalism as merely a description of our information
about the ‘ensemble’ in question. Although the theory
provides an alternative way of looking at quantum
mechanics, it fails to explain the bahaviour of a single,
specific system. Thus, one can see that in spite of
intensive efforts, there have been severe difficulties with
most theories. Can the measurement problem be under-
stood and resolved within the framework of quantum
mechanics, thus making quantum theory truly self-
contained?

An interesting line of investigation to resolve this
issue was initiated by Zeh’, who observed that the
measurement apparatus, being macroscopic, Is nhever
isolated from its environment. The closely-spaced levels
of a macroscopic apparatus make 1t very susceptible to
the influence of the environment. This is an important
observation and forms the basis of the ‘environment-
induced decoherence’ theory’” for the measurement
problem. At this point one should clarify the dissipative
role of the environment. When the Interaction of a small
quantum System Wwith a large quantum system IS
considered, and one monitors the density matrix of the
small system only, one sees the monotonic time decay of
the off-diagonal matrix elements of the reduced density
matrix. These are actually arising due to the super-
position of a large number of harmonic terms, viz,

"_1a, exp(iw, t), which, under the condition that w, are
closely spaced and that the number of terms » is large,
gives rise to apparent decays In the short time limit
t < T, where T is the characteristic ‘recurrence’ time
for the periodic function. However, T can be astrono-
mically large even under mild conditions of »n ~ 1000,
and Aw~ 107, Thus, a quantum system coupled to an
environment consisting of a large number of degrees of
freedom behaves like a classical system in the sense that
at time scales of interest its density matrix is diagonal.
Zurek™” has applied this environment-induced decohe-
rence idea to consider measurement by allowing the

apparatus to interact with an environment,

In the following, we take another look at Zurek’s full
quantum-mechanical treatment of the measurement
problem™”. The model consists of a spin-1/2 quantum
system interacting with a two-level quantum apparatus,
which in turn is interacting with an environment
modelled by a large number of degrees of freedom. An
analysis of the model reveals difficulties with Zurek’s
treatment, and we show that his model does not really
accomplish a measurement of the spin state of the
system. We then analyse” a Stern—Gerlach-type
apparatus, in which a spin measurement is made by
measuring the trajectory variables of a particle obtained
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by letting the position variable of the particle interact
with an environment. We feel that the main point of
difference in the two examples considered is that in the
first case the apparatus does not have a classical limit,
while in the latter it has a classical limit.

We now note some general features of both the
models. The Hamiltonian of the entire system can be
written as

H=Hg+ Hpy+ Hg + Hsp + Hag, (1)

where the subscripts S, A, E stand for system, apparatus
and environment, respectively, Hg etc. denote the
Hamiltonians for the individual components, and Hg,
etc. denote the interaction Hamiltonians between the
components. 1f a dynamical variable O belonging to S is
to be measured, then O commutes with H. Further, O
appears linearly in Hga.

Analysis of Zurek’s model

The system—apparatus—environment model considered
by Zurek®” consists of a spin-1/2 system, a spin-1/2
apparatus and an environment which contains a large
number of spin-1/2 systems. | T ), | 4 ): |£), [F); and {|1),,
I¥),} represent the basis states of the system, apparatus
and the environment, respectively. o, L and {J,} denote
the Pauli spin operators for the system, apparatus and
environment spins, respectively. The mechanism of
measurement is via a two-stage process. In the first stage
the system and the apparatus are allowed to interact, the
time evolution being via the following Hamiltonian:

Hsp =g 0: Ly, (2)

where g is the strength of the coupling. One can see that
the Hamiltonian evolution transforms an initial direct
product state of the system—apparatus

w0 =(aT)+b]1))® (c|t) + d[F)), (3)

where the system and the apparatus are in general
superposition states (a| TY+b4)) and (clt) +d[F)),
respectively, to

W) =a|T) (clt)e™ + d[F)e™) + b 1) (cFe™
+d [£)et). (4)
Zurek considered the special case in which ¢ = d'= 1/¥2,

i.e,, the apparatus 1s initially 1 the known state
(|1) + TFYYV2. At a specific time £ = fp= n/dg,

(D)) = (0 TY I + B 4 ) A2 (5)
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It should be noted that |w(#)) contains definite

corr¢lations between the system and the apparatus

states, but at any other time {y(¢)) contains overlaps of

the apparatus states. The first stage of Zurek’s treatment
terminates at the special state (5), after which the
system—apparatus interaction is switched off. In the
second stage the apparatus—environment interaction 1S
switched on via the Hamiltonian

Hﬁﬁzigh‘(‘:'}kyﬁ'@ L, (6)

k=] JEk

where 0, denotes a unit operator, g;’s are the coupling
strengths and » 1s the total number of two-state systems
constituting the environment. The initial state is taken to
be the correlated state (5) of the first stage and a direct
product with a general ‘environment state’®. The density
matrix is a convenient formal tool for studying the time
evolution of the system. Zurek® shows that in the large-
time limit and as » — oo, the density matrix describing
the system-—apparatus combination reduces to

p=lal’ | YT @&+ P LY T (7)

which is a diagonal density matrix with one-to-one
correspondence between the spin and the apparatus
states. An up-spin corresponds to the [+) apparatus state
with a probability |a|* and a down-spin corresponds to
the |+) apparatus state with probability 5]

It is obvious that the success of the above scheme 1s
crucially dependent on the precise time at which the
interaction of the first stage is terminated. Our approach
is to look at the combined time evolution of the system-
apparatus-environment setup. This approach is more
realistic as it does not require the termination of any
interaction at a specific time. The complete interac-
tion Hamiltonian for looking at the combined evolution
is H=Hsp+ Hag. This Hamiltonian can be
diagonalized. 1If s=%1, and p,==1 denote the
eigenvalues of o; and J,, then the eigenvalues of /A are
given by E(s, {i})=%J(g2+S2); f=2k gulli The
reduced density matrix of the system and the apparatus
after tracing over all the environment variables is given
as

pr = S A0 M8 XXX
T

+sin@, sin(2E, ) (lal* [T (T] = (8][4 (4D
x (1F) (F = (£ &) + Qa1 T+ 187 1) (L)

x [(cosRE, ) — 1 sin(2E, 1) cos 6,) [£) (F] + C.C.]
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+ [ab* |T) (4] e**{(cos 8, + i sin 6, cos (2E, 1))

x (I (&) + [F) (F) + (i sin 6, + cos 8, cos(2E, 1))

x (12) (F| + 1F) (&) + i sinQE, 1)

x (IF) (+] - 1) G} + C.C1}, (8)

where £, is the short-hand notation for E(s, {i,}),
tan 6, = g/f, and C(u)’s are constants dependent upon
the state of the environment given by the variables {u,}.
The summation is over all possible 2” values of the y,
variables. In the large-time limit the reduced density
matriX becomes:

Z
pr = SHEUIL a2 1y (M 167 Wy i+ YD,
T
©)

Result (9) is significantly different from Zurek’s result
(7) in the sense that although the environmental
influence does drive the density matrix of the system
and the apparatus to become diagonal (overlaps between
apparatus states disappear), there is no one-to-one
correlation between the states of the system and those of
the apparatus. The measurement of spin is clearly not
accomplished by using a two-state quanfum apparatus
coupled to a bath of many two-state systems. The above
treatment demonstrates that for the model considered,
‘environment-induced decoherence’ is not enough to
perform a measurement in the sense of a one-to-one
correlation between the system and the apparatus states.
We believe that the failure of this scheme has to do with
the fact that the measuring apparatus is itself a quantum
two-level system which has no well-understood classical
distribution for the range of ‘pointer states’. For such
models, the correlations between the system and
apparatus states are transitory as seen above.

A model for spin measurement —
The Stern—-Gerlach apparatus

Our analysis of Zurek’s model motivates us to examine
an apparatus which has a well-understood classical ltmut.
We consider a model of the Stern—Gerlach apparatus for
spin-1/2 measurements. The measurement of spin here 1s
done via the trajectory (position, momentum) of the
spin-carrying particie. The spin constitutes the system
and the position/momentum degrees of freedom of the
particle, the apparatus. Further, the particle is coupled to
the environment via its position. The Hamiltonian of the
combined setup is'®

(10)

Hsag =p2f(2a‘?1) + ;LG'Z*}' ExC, + Hag + Hg.
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Here x and p denote the position and momentum (taken
in one dimension for convenience) of the particle, Ag,
the Hamiltonian of the system, € the product of the field
gradient and the magnetic moment of the particle, Hyp
the interaction of the environmental degrees of freedom
with x, and Hg denotes the Hamiltonian for the
environmental degrees of freedom. The exo, term gives
the force on the particle, whose direction depends upon
the spin direction. The particle spin (system) does not
interact with the environment. As before, our aim is to
study the time evolution of the reduced density matrix of
the system, from which the environmenta! degrees of
freedom have been traced out. Such an equation for the
reduced density matrix has been derived in a number of
ways earlier' '°. The heat bath (environment) can be
visualized as a collection of harmonic oscillators and the
Feynman—Vernon influence functional technique'’ can
be used to obtain the expression” for the reduced
density matrix. In the limit of high temperature the
expression for the reduced density matrix is then seen to
be a solution of the above-mentioned density matrix
equation. The high-temperature limit is necessary since
we are looking for classical features to emerge as a
measurement, and earlier work'>" has established the
emergence of classical solutions at higher temperatures.
The time evolution of the density matrix is studied'® in
the |s,x) representation, where |[s) refers to the
eigenstates of o, and |x) are the position eigenstates.
Corresponding to the four elements of the spin space
(17,44, T4, 1T), the equations for the elements of the
reduced density matrix p(x, y, r) for our Hamiltonian are:

dpa(x,y,1)  ~h| a2 92
ot 2im | ox2 oy? Pa(x,3,1)
+ lg(xh_y) pd(x}yat)

o
-?(x—y)_—-a;—%—) pa{x,y,1)

D
452

(x~y)?pa(x,¥,), (11)

for the spin-diagonal elements p,, and p,,, with + (-)
sign for py; (p,.);

apod(x,y,r) _ —h i 7L _ d? )
o 2im| &? @/2_"‘*‘““"}’”)
1e(x +
£ £ )
TrE
*y(x“y)‘b}_“-é;“ pud(-’f;)’;’)
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77 (= Poa (3,0 222 p oy (x,3,0),

7
(12)

for the spin-off-diagonal elements p,, and p,. with + (-)
for p,, (p,;). Here y is the Langevin friction coefficient
and D has the interpretation of the diffusion coefficient
In momentum space. In the case of a heat bath of
harmonic oscillators at temperature T, D = 2ymkpT. The
physical significance of the solution can be clearly
understood if we choose the following Gaussian wave

packet of mean momentum 7 and width o for the initial
condition:

W(x,0)) = —r

oy SPlPx=x"/2071(a D+ biL)).

(13)

This 1mtial state corresponds to the wave packet
describing the particle entering the setup. In a recent
work' we have obtained exact solutions for these
equations. The solutions in momentum and position
representations are of special physical significance since
they are connected to what we would actually observe in
the Stern—Gerlach experiment. Consider the solution in
the momentum representation, ¥ and v being conjugate
to x and y. Identifying Q0 =u -v and g = (v + v)/2, the
solution of (11) is

F

z exp{ . q+5e*f’-F—£-(1—e"f)

pd(Q:q:t) =2J

N(T) N(T){ ny
-2
118, e (Y an QD | eet)2
+20'2mye (1=€7%) 4hy2m( - )_
- h? -732 22-
_L462m271 (1—e-7)¢ + n
D1 PN
+2”?273 (21 -344e-7T —¢ f)_Q
+ j——}_j—fl—(l-e*f)il:-—ﬂ—i“
my my?
N & et 1 14
" (1-e )AQ}, (14)
where
N(T) = (DRI Y) (1 =2 + (1/oD) e7°T, (15)

and the solution of (12) in momentun O and position
r=(x-—y)Is

o
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_rig2 Y
Pm(Q,r.1)=exp[ L D]exp i—%l—%’-—]

3m2y3ht h
X eX —-l-l-——'?—-{‘-—-e“ZT).i._.l.._e'—ZT’ y2
P13l 7oy =
. . ETETT _ gD L,
+[lpe r$y2r‘r}0'2 +2Fi2m]/3 (1(1—-e~27)

Dez 11
—2(1—e*f)):&h2m7]r ies (1-e-7)2

(47 —-3+4e-T —e—27) ré

+D
2h%y

+ ip(l—-e7)—- I [2r:-£r—)(l-e—f)

4a2 “Yim

Dr

De
—e~T)2 +
4h2y (1-e™)

- 2h2y3m

(1-e7%)

. -
x(T(l+e*T)—2)izD£T -~ + Det rQ}

himy?Z ¥ nZmy3

[ 202 g27202 ]
X eXP [94 s ] (16)
where
ro= Qhimy x 2et/my* ¥ 2e/my’. (17)

First we note that peq (Q, r, {) approaches zero for large
7 as e~47 for any value of its arguments, establishing
that the spatial overlap of wavefunctions corresponding
to different spin components vanishes. This happens
over a time scale

t, = 3myh 12k T)”. (18)

For the diagonal part p4, one sees that as 7 — oo, the
momentum-off-diagonal components (Q#0, wu=#7v)
vanish, reducing pq4 to a diagonal form in the momentum
space. This happens over a time scale: ¢, = m'y/:ZkBTQZ,
where ( is the extent of momentum space off-
diagonality. However, this is a classical time scale of
momentum relaxation. If one looks at the spatial
transform of (14), one can see that'® the spatial off-
diagonal parts rapidly decay on a time scale

ﬁ2
Imy kgTr?’

t ——

r

(19)

.

become diagonal. The measurement aspects become
clear if we look at the momentum distribution function,
which corresponds to the diagonal elements (Q =0,
u=1v)of eq. (14), as t — oo:

~]
pa(0,u,8) =y (u)f = 2\/ N?(r‘r) exP{ N(1)

(20)

- 8 .-12
X|u+pe *F—(l—e-° .
|4t P hy( )4
The momentum distribution function is centred around
g/hy (-€/hy), which clearly corresponds to up (down)
spins. The density matrix of the combined system at any
time is

p=la’ 1Ty (T oy + 161 1y L oo,

+ab* [Ty (U pry +a*b 1) (T} ps, (21)

where p.. and p,, are given by (14) and p.; and p; are
given by (16). Since p,, and p,, go to zero with time as
e-47* and p,, and p,, become diagonal in the
momentum space, the density matrix (21) at large times
is spin-diagonal and also diagonal in momentum.
Moreover, the probability weights are in accordance
with the quantum-mechanical predictions. Thus, the
measurement of momentum has ensured a measurement
of the spin state of the particle and the ‘momentum
basis’ emerges as the ‘preferred basis™ '*'”, It can be
easily seen from the Fourier transform of (14) that the
density matrix in the position representation has oft-
diagonal elements which do not vanish at long times.
However, even here the superposition effects are
confined to regions comparable to the de Broglie
wavelength of the particle in question, which is of little
consequence for a macroscopic particlels.

The significant aspect of this model of measurement is
that it occurs via environmental decoherence which does
not happen instantaneously but rather over a finite time.
So, it is important to analyse the time scales given by
(18) and (19). Both the time scales Involve two
macroscopic parameters, namely, the temperature T of
the environment and the dynamical friction coefficient .
For a particle larger and more massive than the particles
constituting the environment, y= érna/in, where a is the
radius of the particle and 7 the coefficient of viscosity
of the medium. So, in this situation the time scales
become independent of the mass of the particle. To
make an estimate of the time scales for atomic scale
particles, we make the following plausible assumptions:
y=10%s™", m=10%g 7T=300K, Q= 10°cm™,
g=1eV/cm and r = 100 A. This gives ¢ = 107" s,
t, = 10"sandt, = 1075,

A possible way to test these ideas is to consider the

r being the spatial separation, even though the density

matrix in the position representation does not eventually ~ Spin recombination interference experiments in which
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the first Stern—~Gerlach apparatus (SGA) splits the spin-
1/2 beam and the second one recombines these split
beams in a reversed magnetic field. If in this setup, a
certain amount of gas is introduced to decohere the
positional wavefunction of the spins, the following
consequences emerge. When an x-polarized beam is
passed through the first SGA, the beam splits into two z-
polarized beams which have partially decohered
(depending upon the time of passage). As these beams
pass through the second SGA, the recombined beam will
no longer be one with x-polarized particles but will
contain a statistical mixture of up and down z-polarized
beams as well as an x-polarized component. A
quantitative study of the effects induced by varying the
pressure of the gas may provide an understanding of the
decoherence time scales and the decoherence theory in
general.

Summary

Our analysis of two specific apparatus models reveals
some important aspects of the measurement process. A
full quantum-mechanical treatment of Zurek’s model
shows that although there is dephasing of the apparatus
states due to dissipative coupling with the environment,
there is no one-to-one correlation between the states of
the system and that of the apparatus, and hence no
measurement. This result is interesting because it
suggests that for a measurement to take place it 1s not
enough to have an apparatus coupled to a large
environment as it does not ensure correlations between
the system and the apparatus states in the reduced
density matrix. The reason for the absence of a one-to-
one correlation can be traced back to time-dependent
state vector of the combined system—apparatus, where
the system—apparatus correlations are oscillatory In
nature. We feel that the reason for this feature is the
absence of a classical limit for the apparatus in the sense
of the correspondence principle. Our analysis of the
second model, that of a Stern—Gerlach apparatus,
strengthens this belief. In this case the apparatus clearly
performs a measurement of 5pin'°, the measuring
variable being the particle momentum, which has a well-
defined classical distribution. This conclusion is much
on the lines of the Copenhagen interpretatienz, which
requires the measuring apparatus to be necessarily

classical, Here we have been able to provide a scheme
of incorporating the concept of a ‘classical apparatus’ in
a purely quantum formalism, and demonstrate that a
quantum apparatus having a classical limit, when
dissipatively coupled to an appropriate environment,
does perform a measurement.
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