SPECIAL SECTION

selves are reduced to their single principle. There is thus an
incessant multiplication of the inexhaustible One and
unification of the indefinitely Many. Such are the beginnings
and endings of worlds and of individual beings: expanded
from a point without position or dimensions and a now
without date or duration, accomplishing their destiny, and
when their time is up returning ‘home’ to the Sea in which
thetr Iife onginated.
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NORBERT Wiener’s intellectual activity coursed through
multifarious channels; beginning with logic and philo-
sophy, it surged through pure mathematics, mathemati-
cal physics, engineering and statistics touching on its
way literary, political and social criticism. Today,
Wiener is widely remembered in the general scientific
audience as a founder of cybernetics. This popular
appreciation of Wiener’'s work is not entirely wrong;
however, to mathematicians, Wiener’s name 1s always
associated with fundamental advances in twentieth
century analysis. If Wiener had written nothing else
other than his mathematical papers, his name would still
remain alive amongst modern mathematicians — even

though, admittedly, his popular impact would have been
much less.

930

The purpose of the present essay is to describe some
parts of Wiener’s significant contributions to mathe-
matics in as simple and non-technical a language as
possible. More detailed and technical presentations can
be found in items [A], [C], [M] of the short list of
references given at the end of this article; a brief
chronology of Wiener’s life is given there as well.
References to Wiener’s original papers will be given via
his collected works [W]; an excellent source for
acquiring further understanding of all aspects of
Wiener’s work 1s the biography [M] by Masani.

Although Wiener was extremely precocious in his
intellectual development (as would be evident from even
a cursory glance at the chronology given at the end), his
best-known mathematical contributions were mostly the
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product of his work during the ages of 25 to 50 (1919-
1944), as i1s the case of a vast majority of mathe-
maticians. If we were to select one single predominant
characteristic of Wiener’s mathematical work, it would
be the skilfull utilization of Lebesgue type integration
theory; naturally, this was combined with other
techniques, most notably, from complex function theory;
however, it 1s the early and sustained use of modern
integration theory that seems to be a hall-mark of
Wiener’s mathematical art. Wiener himself has
emphasized this aspect of his work at several places and
has indicated, in particular, the important role that
Lebesgue’s integration theory has played in his own
interpretation and elaboration of the probabilistic ideas
contained in G1bbs’ formulation of statistical mechanics.
Let us recall briefly how the original Lebesgue theory of
integration in the Euclidean spaces R" had matured,
around 19101918, into a very general theory applicable
in abstract spaces. Following some early considerations
of Borel, Lebesgue’s first definitive work appears in his
thesis of 1902. Lebesgue’s considerations were
restricted to studying [f(x)dx for x e R™; Radon, in a
long paper published in 1913 extended the study to
(Stieltjes) integrals of the type |f(x) w(dx) where p is a
general mass or charge distribution in EFE’.N; W. H. Young
(who had independently discovered a Lebesgue type
integral around 1904) introduced a new method for
studying the Lebesgue—Radon—Sticltjes integrals {stll in
R™ using monotone sequence of (semi-)continuous
functions. Young’s methods led P. J. Daniell to
formulate a general theory in 1918 (which 1s still called
the Daniell theory or Bourbaki-Daniell-Stone theory,
after the names of subsequent authors who completed
and popularized Daniell’s work). Needless to say, the
above is a very fore-shortened version of the actual
picture concerning the development of integration
theory during 1900-1918; it neglects important 1ssues
and contributions associated with the names of
Carathéodory, Fréchet, Fubini, Levi, Riesz, Vitali and
many others; the interested reader will find a
mathematically reliable description of some of this
history in Bourbaki’s chapter on integration in [B]. The
point of the preceding brief historical sketch 1s to
indicate the state of affairs concerning integration theory
which faced the youthful Wiener in 1919~1920 as he
began to apply Daniells’ theory to two entirely different
areas of mathematics —one classical, viz. potential
theory (during 1923-1925) and the other, an as yet non-
existent area in a strictly mathematical sense, viz.
probability theory in function spaces. Wiener’s first

paper in the latter area appeared in 1920 (‘The mean of

a functional of arbitrary elements’, item [20¢] in vol. |
of [W]) followed by a series of others during the
following years culminating in his famous paper of 1923
(‘Differential-space’, item {23d] in vol. 1 of [W]) in
which Wiener gave, amongst{ many other things, a
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mathematical construction of an important probability
measure on C({0, 1}), the space of all continuous, real
functions on [0, 1]; this is now widely known as the
Wiener measure and 1t provides the precise framework
for a mathematical study of the Brownian motion;
indeed, it has remained the basic paradigm for the study
of all continuous stochastic processes. We may add here
that the Wiener measure and the associated stochastic
process were to permeate a large part of Wiener’s
thinking for the rest of his life and a great deal of his
mathematical (and other) work flows, directly or:
indirectly, from the considerations of his 1923 paper;

this is eloquently summarized in the following statement
of Wiener himself, taken from his autobiographical

volume Ex-prodigy (1953), pp. 274-275: ‘Most of my
later work in mathematics goes back in one way or
another to my study of the Brownian motion. In the first
place, this study introduced me to the theory of

probability. Moreover, it led me very directly to the

periodogram, and to the study of harmonic analysis
more general than the classical Fourier series and
Fourier integrals. All these concepts have combined
with the engineering preoccupations of a professor of
the Massachusetts Institute of Technology to lead me to
make both theoretical and practical advances in the
theory of communication, and ultimately to found the
discipline of Cybernetics, which 1is in essence a
statistical approach to the theory of communication.
Thus, varied as my scientific interests seem to be, there
has been a single thread connecting them all from my
first mature work to the present.” Remarks of a similar
nature appear scattered elsewhere in Wiener’s writings
(e.g. in [ am a mathematician, 1956, Wiener's second
autobiographical volume) and we shall try to show In
this article how well justified Wiener’s self-analysis
was; we shall however restrict ourselves only to his
mathematical work, although the remarks contained in
the above citation apply to a great deal of his other

contributions.
It is to be noted at this point that by 1919 Wiener had

mastered the standard theory of Lebesgue integrals very
thoroughly, in particular, during his studies in
Cambridge (England) 1n 1913-1914 where he enthusias-
tically followed a course of analysis from G. H. Hardy
containing ‘the first principles of mathematical logic, by
way of the theory of assemblages, the theory of the
Lebesgue integral, and the general theory of functions of
a real variable, to the theorem of Cauchy and to an
acceplable logical basis for the theory of functions of a
complex variable.... If I am to claim any man as my
master in my mathematical tramning, it must be G. H.
Hardy’ (Ex-prodigy, p. 190).

We shall now try to explain in what way the Daniell
generalization of Lebesgue’s integration theory enters
into Wiener's work. First however we must spend a little
time in explaining briefly the nature of the Lebesgue
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integral and in what way this integral was generalized by
Daniell and others.

The integration of a continuous function f: R "—R
with compact support (i.e. f(x) vanishes for all x outside
a bounded set) was a well-understood subject by the
middle of the 19th century. The case N=1 and f>0
concerns the determination of the area under the curve
defined by the equation y=f(x) and in this form it is of
great antiquity dating back to studies of Archimedes
(5rd century BC); its more systematic development by
Letbniz and Newton in the 17th century was part of the
development of the infinitesimal calculus; generalization
to N>2 along with numerous further developments was
worked out by the Bernoullis and Euler during the 18th
century (with the mathematical rigour prevalent in that
period); with Cauchy’s work in the early 19th century
the logical foundation of the | f(x) dx (f as above) may
be said to be complete, at least in the one dimensional
case (N=1)-—although functions of more than one
variable continued to cause difficulty to many
mathematicians, even famous ones, until very late in the
19th century. The definition adopted was that

[£=[r@de=1mY fIm4).
1=l

where A,, A5, ..., A, is a finite family of non-
overlapping rectangular sets (N-dimensional rectangular
parallelopipeds) whose union contains the bounded set
where /20, x,€ 4, 1<i<n, and m(4,) 1s the N-
dimensional volume of 4, (i.e. m(4,) equals the product
»f the N lengths of the N ‘sides’ of 4, ); the limit is taken
in the sense that all the sides of each of the A, tend to 0;
this last point must be defined more carefully but this is
now done in all rigorous courses of first year university
calculus and will not be further discussed here.
Naturally, the existence of the limit needs proof; this
and other facts (for f continuous with bounded support)
can be considered to have been well-established by the
1850s. One problem with the above theory was that
often one needed to integrate functions f which were not
continuous; when f had simple discontinuities the
definition of | f could be re-adjusted in a satisfactory but
ad hoc manner; however, this ad hoc cobbling was not
found sufficient. Riemann, in his 1854 Habilitations-
schrift (published after his death in 1867; such a
Habilitationsschrift in German universities is written
after a doctoral dissertation — Riemann wrote his
doctoral dissertation in 1851 —in order to obtain a
‘venia legendi’, the permission to teach as a
Privatdocent) on trigonometrical series, had given, in
passing, as it were, the definition of [/ (for the case
N=1) for an arbitrary bounded function f with bounded
support; Riemann’s main interest in writing his
Habilitationsschrift lay elsewhere and he did not study
the integral in any detail except to give a necessary and
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sufficient condition for the existence of ff as a limat
of sums of the type (1) (known now as Riemann
sums associated with f). Of the several drawbacks
of Riemann integrability let us mention the follo-
wing: suppose that f(x)=hm,_ . f,(x),x¢€ RN with
n=1,2,..., uniformly bounded and
vanishing outside a fixed bounded set; even if all the f;’s
are Riemann integrable, f need not be s0. This
shortcoming of Riemann Integrability 1s removed in
Lebesgue’s theory which however we shall not try to
describe here since i1t would necessarily be rather
lengthy. Instead, we shall indicate Daniell’s approach
which is more general and which is the one that Wiener
uses in his work.

In Daniell’s theory, we start with a vector space Ty of
bounded real-valued functions defined on any set X it is
supposed that if fe Ty then | f | e T, (whence follows
that 7y is a vector-lattice, i.e. f, g e Ty implies that
max( f, g) and min(f, g) are also In 7); further, let the
constant functions belong to T,. (Some of the hypotheses
on Ty can be relaxed at the cost of some added
complications in the description of the theory; the
structure imposed on Ty above will be sufficient for our
further developments.) Let I:73—> R be a linear
functional which is positive (i.e. f20=>/(f)=20) and
which verifies the property (L): it {f, } 1s a decreasing
sequence of functions in 7y such that f,—>0 as n— ©
then I( £,)— 0 as n > . Daniell’s main theorem is then
that / can be extended to a larger vector-lattice of
functions 7> Ty in such a way that / remains a positive
linear functional having the property (L) and the
following two further properties: (1) (monotone
convergence property) if fi<f;<...1s a sequence of
functions in 7 and lim,, I( f, ) is finite then f=lim, f, 1s in
T: (2) (the dominated convergence property) if /1, f2, . . .
is any sequence of functions in T such that f,—f as
n— o and lﬁ, ‘ <g, n21, for some ge 7T, then feT
and /(f, ) = I(f) as n = . The functions in 7 are called
summable functions; it turns out that there is a countably
additive positive measure i on a o-algebra of subsets 2
in X such that T is made up of exactly the u-integrable
real functions on X and that for any fe T, I(f y=Ifdu
This last point was not established by Daniell although
the idea of considering integrability of function on an
abstract measure space (X, Z, x) had been studied in
detail earlier by Fréchet in a paper published in 1915;
this is now standard material for probability or
integration theory courses and will not be explained any
further here. What I find interesting to add at this point
is the following historical remark: Wiener who was
familiar with many of Fréchet’s writings of this period
and who had even known Fréchet well around 1920 did
not attempt to correlate Fréchet’s 1915 work on
integration theory with that of Daniell; neither did
Daniell try to establish any connection between his
theory and that of Fréchet whose 1915 paper he refers to
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in his own 1918 article. In fact, the relationship
mentioned above between Daniell’s summable functions
and Fréchet’s integrable functions is not difficult to
establish and the proofs known to-day use very much the
type of techniques that Daniell was using in his paper.
This clarification would have been useful to Daniell as
well as to Wiener; in particular, Wiener needed at
various points of his work that the indicator functions of
certain sets were indeed summable and, in each case, he
uses an ad hoc argument to establish this. Wiener
however seemed to be quite familiar with the special
cases where Daniell’s summable tunctions coincide with
Lebesgue—Radon—Young—Stieltjes integrable functions:
here .X is a bounded, closed rectangular set in R, 7
consists of the continuous real-valued functions defined
on X and I(f)=Ixfdm in the sense of equation (1)
where m 1s either the ordinary volume of rectangular
sets (as above) or some other mass or charge
distribution; if m is the ordinary volume, Daniell’s
summable functions are exactly the Lebesgue integrable
functions in X; for a more general distribution m one
obtains the so-called Lebesgue—Stieltjes integrable
functions; this was clear from the previous studies of
Radon and Young, and Wiener was thoroughly aware of
this since he used this fact at several places of his six
papers devoted to potential theory published during the
years 1923-1925 (all reproduced in [W] vol. 1). We
shall start with a brief description of the nature of
Wiener’s contributions in these potential theory papers;
all of Wiener’s results in these papers have been
thoroughly integrated into modern potential theory
which has been perfected to such a great degree due to
the works of Brelot, Choquet, Deny and many of their
brilliant followers during the last 50 years. Wiener never
returned to this field later, although potential theory was
to play such a central role in the development of
probability theory during the fifties and sixties through
the work of Doob and Kakutani on continuous
Markovian stochastic processes related to Brownian
motion.

The central problems of classical potential theory are
related to the solution of the Dirichlet problem: given a
domain (connected, open set) Dc RN and a continuous
real-valued function ¢ defined on Fr D (the frontier of
D; thus ¢ e C(Fr D)) the Dirichlet problem consists in
the determination of a continuous real-valued function u
defined on D = DwFrD which is twice continuously
differentiable in D and such that u=¢ on Fr D and
Au=0 (where Au=2d%ul/dxi+-+d*uldxy is the
Laplacian of u). If the domain D is bounded, it was
known for a long time, that the solution to the Dirichlet
problem, if it existed at all, was unique; further, various
examples of bounded domains were known where a
solution did not exist and for many types of relatively
‘regular’ bounded domains, not only the existence of the
solution was known but on¢ knew various formulae for
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representing them. It was in this context that Wiener
tried to °‘solve’ the Dirichlet problem for arbitrary
bounded domains. One of his starting points is the
following observation (cf. [23¢] 1n [W], vol. 1): suppose
that D is a bounded domain in RN which is regular for
the Dirichlet problem in the sense that there is a
(unique) solution w=wu, corresponding to any
specification of a continuous boundary value ¢ (in the
notation above); then, to each y e D, there exists a

probability measure u, defined on the (Borel) subsets of
Fr D such that

1y ()= | (X1, (@) @)
FrD

The measure 4, is called the harmonic measure on
Fr D and the simple proof of its existence given by
Wiener i1s quite modern in spirit (and actually the one
generally used today). It goes as follows: for each y € D

define /, on Io = C(Fr D) by the formula
ILo=u,(y), peT;

then it 1s easy to verify that I, is a positive, linear
functional satisfying Daniell’s limit condition (L); thus
I, corresponds to integration with respect to a positive
measure y, defined on the (Borel) subsets of Fr D; since
I(1)=1 it is clear that each g, is a probability measure.
Wiener then goes on to prove that if fis any real-valued
function defined on Fr D which is z-integrable for some
ye€ D then it is py-integrable for all ye D and the
function defined by

v,00= | fGon, @), yeD
FrD

defines a function harmonic in D (i.e. Avy=0 in D);
Wiener then shows that if f is bounded and is,
furthermore, continuous at a point pe€Fr D then
limy, ., v, (»)=/(p). In a subsequent paper ([24a] in
[W], vol. 1) Wiener showed how to associate a
harmonic function u,to each ¢ in C(Fr D) where D is an
arbitrary bounded domain in such a way that the
‘boundary values’ of u, are related to ¢ in a reasonable
manner; this is done by approximating D from the inside
by a sequence of regular domains D,c D. In a later
paper ([25]a in [W], vol. 1) Wiener showed that his
solution u, is the same as another one given by Perron
as well as Remak (independently of Wiener, in 1923 and
1924 respcectively). Wicner goes on to introduce the
important notion of the capacity of an arbitrary set and
uses this to give a sutficient condition that a point
regular point in the sense that
Uy (x)—> @ (p) as x = p for all ¢ € C(Fr D)) where u,, is
his ‘gencralized’ solution associated with the boundary
function . Thus, Wiener in his six papers during {923-
1925 Introduced and studied in great generality some of
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the cential 1ssues of potential theory: generalized
solutions, capacity of sets and regularity of boundary
points.

We now describe Wiener's work on the theory of
Brownian motion, on¢ of his most fruitful and important
creations in mathematics, Let & denote, say, the x-co-
ordinate of the position of a particle in Brownian motion
at time ¢; let S,=0: it was known and very clearly
arcued in a celebrated 1905 article of Einstein on
Brownian motion that the random variable & will have a
nq}rma! (Gaussian) distributioﬂn with mean 0 and variance
ot (briefly, & is MO, o°t)) where o>0 depends
on various physical characteristics of the fluid, the
particle and some universal physical constants; further,
it was natural to suppose that if 0<s<¢, & - will
be independent of all the positions £, ¥ <s and that &~
= will be distributed as N0, o’(r—s)). The pro-
blem facing mathematicians was to establish the
existence of a suitable mathematical edifice which
would accommodate a family of random variables ¢
with the above structure Since the physically observed
paths 1+ & of a particle under Brownian motion were
continuous, albeit very irregular, it was natural to try to
model & (with ¢, say, restricted to [0, 1]) as the value at
t of a typical element x of the space X=C([0, 1})
consisting of those continuous, real-valued functions on
[0, 1] which vanish at 0. Thus, Wiener formulated the
problem as one of constructing a probability measure i
defined on a suitable family of subsets of Co({0, 1])
which has the following properties (here o=1 for

simplicity):
@ for 0<s<t<] and any bounded (Borel) function
[ R-o>R

j Fe() - x(s)dW(x) = j £l plus 1 - $)du
X —ow

@ if 0<fi<fr< - <t,£1 and f: RN >R is any
bounded (Borel) function of # real variables then

[ Oty e ) = [ £ et,) Plats)
X R”

platy =gty =1y) oo (U, = Up_yst, =, )y .. di,.
(3)
If now Ty is taken to be the space of all bounded

functions F on X=Cy([0, 1]) which ‘depend only on
finitely many time points’ (i.e. F(x) =/ (x(f1), ..., x(1:))

for some choice of £),...,4,, 0<rfi<r,<..<t,=landf

a bounded (Borel) function of n real variables) and /(F)
is defined by equation (3) then it is clear that /: X—> R
is a positive, linear functional as in Daniell’s theory
(along with the further property that /(1)=1). It 1s
however not at all clear that J satisfies the limit
condition (L); Wiener established (L) by an interesting

934
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‘tightness” argument which we shall not go into here;
suffice it to say that this tightness argument plays a
centra! role in many modern discussions of integration
theory in infinite dimensional spaces. Needless to say
Wiener’s presentation in his famous ‘Differential-space’

paper of 1923 (referred to above) is not quite as direct
as perhaps implied by the preceding lines. Nonetheless
this 1923 paper is generally acclaimed to be the first
rigorous study of the Brownian motion; this paper
(along with six other papers published during 1920-
1924, all contained in [W], vol. 1) is remarkable for the
pregnancy of the mathematical ideas contained therein,
even though Wiener’s heuristic exposition makes its
conscientious reading quite {aborious.

We shall now briefly outline how Wiener’s work on
generalized harmonic analysis and Tauberian theorems
flowed from his study of the Brownian motion. For this
purpose, let us consider a Brownian motion {&,} where
t now ranges over —w to oo; from the point of view
presented above this involves defining a probability
measure W on C(R), the space of all real-valued
continuous functions defined on R, such that if
E(x)=x(r), xe C(R), te R then & is N(0, |#]) and
(& - &) is independent of all £, a<s, for all s<f. The
existence of such a measure # can be proven in much
the same way as above (or else deduced from the
measure constructed above). Now Wiener had proven in
his 1923 paper that with W-probability one, the
Brownian paths t & (i.e. a set of x’s in C({0, 1])
of W-probability 1), although continuous, were
extremely irregular; they were of unbounded vartation,
nowhere differentiable, but of Hoélder-class a<1/2.
Wiener had also perceived that the fluctuations of a
Brownian path were very similar to that of the voltage
difference often observed between two terminals and
which was known as the ‘shot effect’; superposed on
electrical signals this shot effect was a noise which
tended to distort the original signal. He was thus
motivated to extend the classical Fourter or harmonic
analysis to such irregular functions. One of his remark-
able innovations was the association of a ‘generalized
Fourier transform’ to a large class of functions f which
were not necessarily in the classical L*(R)-class and
which included almost all Brownian paths (and all
almost periodic functions); the condition imposed on f
was that fshould have an auto-correlation function ¢

T
Ok ?l,_i_g;}_-—l-f: ff(x‘-**t)f(x) dx, e,
-

Note that if £ is in L’(R) then ¢=0 and that if ¢(0)
exists then

1>

T
sup— [ (D dw <o
-7
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which implies (quite easily) that

Jlf(x)lzdx«t o, [17G xdx < oo

| x| >1

this last fact is generally indicated by stating that

_[If(l‘)l2 /(1+ x%)dx < oo.

If we define (following Wiener)

J‘ f (x)e““"

x:

Sl(u): :J_—

[x[>1

—IHI 1

s;(u) = J— Jf(x)

and s=s5,+5, then s is called (by Wiener and his
followers) the generalized Fourier transform of f, the
function sy exists (at least almost everywhere) since it 1s
the L%-Fourier transform of the function f; which equals
f(x)/(—ix) if |x|>1 and is 0, if |x|<1, and f, e LA(R);
the function f; which equals f(x) if |[x|<1 and 1s O if
Ix|>1 is square integrable and hence integrable (since f;
vanishes outside the compact interval [-1, 1]). Recall

~,

that if g is in L*(R) then its L*-Fourier transform g

satisfies the following: g(u) =1/2n Jm g(y)e ™dy (in

the L? sense) and

X
e~y ]

lé(u)du— jg(y) b

It is thus clear that the ‘derivative’ of the generalized
Fourier transform s of f (as defined by Wiener) is the
‘senuine’ Fourier transform of f (considered as a
tempered distribution) in the sense of Schwartz; since
this point has not been clearly stated in the literature, let
us briefly outline the argument. If  is any rapidly
decreasing C”-function on the line (of the Schwartz
class S) then we shall verify that

jf(x)vf(x)dx =~ [ sCow(x)dx = js (x) (x)dx

which means exactly, that the tempered distribution f

(defined by {f,w)={(f,y). v € S) is the distributional
derivative of s: the verification is contained in the

following easily justifiable formulae:

[ i == [ fotixg)des [ fE0wx
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=~ [ Xy "@dx+ [ F oy ds

- [Aw - [sew @

(since s, = f,, at least, in the distributional sense)

L=

- [ 51w = [ 59 0de = [ sy (x)dx

Ol

(since s, =fl and s = s, +35,).

It now becomes clear, in analogy with the classical
Parseval-Plancherel formula, why Wiener tries to prove
that the ‘L% -norm of s’ equals the ‘L*norm of f* in the
following form:

lim : J\S(x+£)—s(x—£)\2dx hm—j\f(x)l*
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0

(4)

Formula (4) is an important formula in Wiener’s theory;
its proof remains difficult even today. To prove (4)
Wiener was eventually led to the development of a so-
called Tauberian theorem which in its turn led to the
profound Wiener Tauberian theory which, at one stroke,
generalized, on the one hand, a wide variety of deep,
classical theorems due to Hardy, Littlewood, Tauber and
others and, on the other hand, has given rise to a broad
spectrum of methods and problems in modern harmonic
analysis in locally compact groups. In his auto-
biographical volume I am a Mathematician (p. 11J5)
referred to above, Wiener describes how he was led to
this work through a chance conversation with Ingham.
Space does not permit me to describe here Wiener's
work on Tauberian theory, one of his most brilliant
contributions to modern analysis; however, many books
in harmonic analysis give an introduction to Wiener’s
Tauberian theory (e.g. Katznelson, Introduction to
Harmonic Analysis, 1968) as does Wiener himself in his
famous book The Fourier Integral and Certain of its
Applications, 1933; this last describes Wiener's
ceneralized harmonic analysis as well.

In the above survey, I have been obliged to lcave out
two important areas of mathematics where Wicner made
fundamental contributions. The first concerns certain
aspects of the classical theory of analytic functions
evoked by the appcllation ‘Paley-Wicner theory’;
R.E.A.C. Paley (1907-1933), an Lnglish mathematician,
collaborated with Wiener during 1932-1933; an account
of his work is contained in their joint monograph
Fouricr Transforms in the Complex Domain (1934) and
in many other modern texts, The second area invohves
Wiener’s work on prediction and filter theory, carried
out, in part, in collaboration with engineers, scientists
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and other mathematicians during 1940-19359; this also
gave rise to several important monographs: Extrapola-
tion, Interpolation, and Smoothing of Stationary Time
Series with Engineering Applications (1949); Nonlinear
Problems in Random Theory (1958); a partly non-
mathematical work Cybernetics (1948, 1961) which lays
out the philosophical and mathematical point of view of
Wiener concerning the field of Cybernetics; the mathe-
matics invoked in this last book touches on most of
Wiener’s previous mathematical work on probability theory
and analysis and gives us an elegant essay which eloquently
formulates a great deal of Wienertan Weltanschauung.
Lastly, it must be added that there are many important
mathematical results or insights due to Wiener which
have not been adumbrated at all in the above. We should
at least mention his important ergodic theorems, his
attempted applications of these theorems to turbulence
(*homogeneous chaos theory’), the Hopf—-Wiener theory
for certain integral equations as well as several elegant
results of his in general Fourier analysis (e.g. concerning
absolutely convergent Fourier series) and their applica-
tions to number theory (e.g. Ikehara—Wiener Tauberian
theorem and the prime number theorem). And finally, in
order to underline again, the numerous other contribu-
tions of Wiener, we must reiterate that the present article
does not even attempt to touch on the copious writings of
Wiener in fields like physics, engineering, etc. where the
mathematical component of Wiener’'s work is far from
being negligible. A perusal of the collected works of
Wiener leads us to appreciate the fundamental unity in
Wiener’s creation as well as to the reflection that here 1s an
immense amount of mathematical suggestion which awaits

to be developed by the future generation.

Brief chronology of Norbert Wiener’s life

1894 Born on Nov. 26 in Columbia, Missouri, USA

936

A il

1909 Received an A.B. degree from Tufts
College (near Boston, USA)

1913 Received a PhD degree in philosophy
(with a dissertation 1in mathematical
logic) from Harvard University

1913-1916 Postgraduate studies at the universities of
Cambridge (England), Gottingen, Columbia
(USA)

1919 Appointed instructor of mathematics
at MIT

1926-1927 Marriage; research and teaching in
Gottingen and Copenhagen

1931-1932 Visiting lecturer at Cambridge University
(England); appointed professor of mathe-
matics at MIT

1935-1936  Visiting professor in Peking (China)

1940-1945 Wartime research leading to prediction
and filter theory

1946-1964 Numerous lectures at various institutions
in the USA, Mexico and overseas (Europe,
India, Japan)

1964 Died of heart attack on 18 March in

Stockholm, Sweden.
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