SPECIAL SECTION

To obtain more physically realistic models, one must
proceed to establish dynamic models in which the slip
is one of the unknowns derived from the state of stress
and the strength of the material at the source region.
The general problem of dynamic models is based on
the 1dea of crack formation and propagation in a
prestressed medium. A discussion of the dynamic models
of earthquake source mechanism is beyond the scope
of this paper (see e.g. refs 15 and 16).
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A large measure of uncertainty is associated with
the earthquake ground motion. The characteristics
of the earthquake ground meotion are examined to
identify the sources of uncertainties. Seismic risk
analysis i1s presented to establish the distribution of
peak ground motion parameters. Random process

models of the earthquake ground motion are
discussed.

Aseismic design of a structure involves prediction of
the nature of ground motion at the site during the
service life of the structure. This in turn requires: (i)
identification of the potential sources of strong motion
earthquakes; (ii) geometry of each source; (iii) magnitude,
epicentral location and focal depth, and time history of
occurrence of past earthquakes for each source; and (iv)
attenuation laws.

A large measure of uncertainty is associated with
ecach of the above factors. The cumulative effect of
these uncertainties makes the earthquake-induced ground
motion at a point, a time-dependent random process
vector. In earthquake engineering, it is convenient to
resolve this vector into three random processes—two
along perpendicular directions in the horizontal plane
and one vertical. The uncertainty in the earthquake-
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induced ground motion may, therefore, be represented
to varying degree of completeness by: (i) ensemble
of sample functions; (ii) hierarchy of joint probability
distribution, or characteristic functions; (iii) envelope
functions, and intensity moments'; (iv) spectral density
functions and spectral moments’, Fourier and response
spectra; and (v) gross properties of ground motion
components in terms of random variables, such as,
peak values of ground acceleration, velocity and dis-
placements, r.m.s. value, duration, spectral intensity,
etc.

For long structures with a dimension significantly
large as compared to the characteristic wavelengths in
carthquake ground motion, the spatial randomness must
also be considered and the ground motion must be
modelled as a multi-parametered random process vector.
This introduces additional uncertainties.

In this paper we consider the cumulative effect of
uncertainties assoctated with various factors to establish
the distribution, and other characteristics of ground
motion at a point in terms of: (i) peak ground acceleration,
velocity and displacement treated as random variables;
and (11) ground motion time-histories, treated as random
processes. First, we consider the characteristics of the
earthquake induced ground motion.
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Characteristics of earthquake ground motion

Most earthquakes of engineering significance are of
tectonic origin and are caused by slip along geological
faults. While specific source mechanisms leading to a
slip vary in different regions of the earth, four basic
types of faulting can be identified with strong-motion
earthquakes’. In most earthquakes, the actual slip
mechanism is a combination of two or more types of
faulting. Often slip occurs on an irregular surface and
on more than one fault. The characteristics of ground
motion during an earthquake in the vicinity of the
causative fault (near-field) are strongly dependent on
the type of faulting and the time-history motion of fault
displacement. As we move away from the fault (far-field),
the nature of ground motion is primarily determined by
the travel-path geology. The nature of ground motion
at a point on the earth’s surface is also influenced by
local site conditions, that is, soil properties and topo-
graphy. Characteristics of source mechanisms, travel-path
geology and local site conditions, therefore, determine
the nature of ground motion due to an earthquake. The
basic characteristics of resulting seismic waves depend
paomanly on: stress drop during the slip; total fault
displacement; size of the slipped area; roughness of the
slipping process; fault shape; and proximity of the
slipped area to the ground surface. As the waves radiate
from the fault, they undergo geometric spreading and
attenuation due to loss of energy (internal friction) in
the rocks. Since the 1nterior of the earth consists of
heterogeneous formations, seismic waves suffer multiple
retflections, refractions, dispersion and attenuation as
they travel. Seismic waves arriving at a site on the
surface of the earth are thus a result of complex
superposition giving rise to an irregular motion which
may be modelled as a random vector varying randomly
In space and time.

Earthquake ground motion at a point on the surface
of the earth consists of both translation and rotation
components. For most problems the rotational component
can be disregarded and ground motion treated as a
random vector with three orthogonal translational com-
ponents. Each component can be expressed either by
an acceleration, velocity or displacement function of
time. Although the three forms contain equivalent in-
formation and can be derived from each other by
differentiation or integration, it is generally convenient
to represent and record earthquake ground motion as
acceleration from which velocity and displacement are
derived through integration, if required. The ground
acceleration, velocity and displacement time-history of
a typical ground motion (NS.EL—Centro, 18 May 1940)
are shown in Figure 1.

The dynamic behaviour of structures during an
earthquake is determined primarily by the amplitude,
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frequency content and duration of ground motion. The
amplitude of strong-motion earthquake acceleration
records generally exhibit (i) a rapid build-up at the
beginning of the motion; (i1) a nearly constant value
during the strong-motion shaking; and (i) an exponen-
tially decaying tail. Their frequency characteristics are
reflected by the Fourier amplitude spectra; power spectral
density (psd); response spectra; or response envelope
spectra’. Most strong motion earthquakes possess broad-
band characteristics, and their acceleration time-history
can be adequately modelled as a uniformly modulated
stattonary random process. The high frequency com-
ponents of ground motion attenuate with distance faster
than the low frequency components, and this strongly
influences the spectral characteristics of ground motion
with distance. The 1mportant parameters defining the
gross characteristics of earthquake motion at a site are
the peak values of ground acceleration (A,), velocity
(V,), displacement (D,), the r.m.s. value of ground
acceleration (C,); the response spectra (SA, SV, SD),
the spectrum intensity (SI), a site Intensity such as
(1), and the duration (T’). These may be treated as
random variables. In the next section we derive the
distribution functions of the peak ground motion
parameters through seismic risk analysis. A similar ap-
proach may be used for estimating other parameters.

Distribution of peak ground motion
parameters

The occurrence of earthquakes, both temporal and spatial,
involves a large measure of uncertainty. The multiple
retlections, refractions and dispersions of seismic waves
at 1rregular boundaries in the course of their travel to
a site compound the level of uncertainty even further.
This results in a high level of variability in the estimates

Time, SEe

Figure 1. Ground motion time histories of El-Centro. May 18, 1940,
NS-component earthquake record. (@) acceleration, (b) velocity, and
(c) displacement.
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of ground motion intensity at a site during the service
life of a structure, which is the major contributor to
the total seismic risk. This is determined by embedding
the random vibration analysis into seismic risk analysis.

The location of a site in relation to an earthquake
may be specified by the focal distance (R); or by the
epicentral distance (X) and the focal depth (H). Clearly,

R = (X*+HYH'? (1)

Peak ground acceleration, peak ground velocity, and peak
ground displacement, are respectively the absolute peak
values of the ordinates in the ground acceleration,
velocity and displacement records at a site. An empirical
relationship between the peak ground motion parameters
(A4,, V, or D,) and the magnitude and focal distance,
called attenuation r-s:lauons can be expressed in the
following general form™®

Y = b, exp (b, M)R™, (2)

where Y may denote AE, Vg or Dg; and b, b, and b,
are constants which depend on the quantity represented
by Y. Esteva and Rosenbleuth’ suggesting that, for
southern California, the average values of constants
(b,, b,, b;) may be chosen as (2000, 0.8, 2), (16, 1.0,
1.7y and (7, 1.2, 16), if Y denotes As, V., or D, in
units of centimetres and seconds, and R is measured in
km. It may be remarked that available data show a
large scatter around the mean curve represented by 2’.

We shall discuss this aspect later.

Seismic risk analysis

Seismic risk at a site 1S usually expressed in terms of
the probability of site intensity exceeding a certain value
in a given period of time. The term ‘intensity’ is used
here 1n a generic sense to denote any one, or a function
of several, ground motion parameters’. To determine
the seismic risk at a site, it is necessary to construct
stochastic models of source parameters, both temporal
and spatial, and the travel path. A seismic source is
characterized by its geometry, temporal characteristics
and size of the seismic events. The geometric shape of
the source on the surface of the earth can be 1dealized
as a point, a line, or an area based on the knowledge
of the spatial distribution of past earthquakes and known
geotectonic  features. The spatial distribution of
carthquakes can generally be assumed to be homogeneous
in a source, and, if necessary, a source may be subdivided
into homogeneous sources. The focal depth of
earthquakes is usually assumed to be constant. However,
if focal depth data are available, a distribution can be
fitted” ', The occurrence of carthquakes, in time, at a
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source 1s generally assumed to follow a Poisson dis-
tribution, so that

(vt)" exp (— vi)
— 3)

where P, (n, f) denotes the probability of occurrence of
n earthquakes of magnitude greater than say m, during
the time interval ¢, and v = v(m,) is the expected rate
of occurrence of such earthquakes. A Poisson model
assumes stationarity and independence of successive
events. Both these assumptions remain to be fully sub-
stantiated by data and evolutionary nature of earthquake
occurrence, specially if fore- and after-shocks are in-
cluded. However, the model is considered adequate for
the service life of most structures' '

The probability density function of the magnitude of
earthquakes may be expressed as

Py(n, 1) =

p,(m) =P expl~B(m-m)l, m=m,, (4
where m, 1s the threshold magnitude below which the
events are not of engineering interest and B =
(1.5—2.3) is a constant for the source.

It 1s clear that the variables M and R in equation (2)
are random variables, and therefore, the site intensity
Y 1s also a random variable. The distribution of M is
given by equation (4), and the distribution of R can be
derived for a given source-geometry, assumed spatial
distribution of epicentres and focal depth. For example,
for a line-source of length L, uniform distribution of

epicentres along the line and constant focal depth, it
can be shown' that

; 2r
py =

L(’;d)uz!dﬂ"ﬁro* (5)

where d and r, are indicated in Figure 2. Assuming
that R and M are independent random variables, it can
be shown from the theory of functions of random
variables that"”

P=PIY 2 )=1-F, (=T Gy y 2y, 6
where
C = exp(Bm,) (b)) b8y (7)
5 e r/d) —
G = ) (cos k)™ du, (8)
= B (by/b)~ 1, ©)
and

= b, exp(bym)d™.



SPECIAL SECTION

Site

Figure 2. Line source: {a) perspective, and (b) plan (Cornell, 1967).

Note that parameter G depends on the geometry of the
source and can be similarly derived for the area source.
For a point source

G = (r)-aw]_

Equation (6) gives the probability that the site intensity
Y will exceed the value y given that an event of
magnitude M 2 m, has occurred at the source. Since
the occurrence of such events at a source is assumed
to be Poisson with arrival rate v, it is c]ear that events
with site-intensity: Y 2 y, are ‘special events’ with arrival
rate P v, and

N (Pve)
P,(n 1= oy exp (~P,vi),
n=0123, ..., (11)

where N*(¢) is the counting process of special events
Y 2 y at the site.

Let Y () denote the maximum value of intensity
over a t-year period, and let

Y =Y () 1t =1,

be the annval maximum intensity. It can be shown that
A ’
F, (y) = exp[-VCGy "], y 2y,

= 1=VCGy ™%, y 2y, (12)

if ¢CGy Pb) « 1, for probabilities of interest in design.
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The annual return period 7, 1s given by

1
5 =1 —(F,/y)

L pn)
A v 13
5C (13)

where ¥ = v/L. The T-year intensity y, 1s obtained from
equation (13)

y,. = (GCGT‘, Nk (14)

It may be noted that equation (12) represents type-1I
asymptotic extreme value distribution of largest values.

The above results have been derived for a single
source. If a site experiences shaking by more than one
source, the above results can be easily extended, assuming
the various sources to be independent. Consider m such
sources. It is clear that P [Y_(f) € y] 1s the probability
that the maximum value from each source is less than
or equal to y, that 1s

= expl~ ), VC,GyP?ut |, y2>y, (15)

where F ,5:_) (y, D 1s the distribution of the maximum, in
time ¢, for jth source, and y’ is the largest y'. If constants

B, b, =1, 2, 3 are the same for each source, equation
(15) reduces to

Fy' (3, 1) = exp (- NGy V"), (16)
where
V6 =Y V.G, 17
=1

Equations (16) and (17) indicate that each source con-
tributes approximately in an additive way to the risk.
The design intensity for a specified probability (y, s
the return period for a specified intensity, and T-year
intensity can be obtained from equation (15) or equation
(16) for a multiple source condition.

Some extensions and comments

The discussion in the preceding sections covered the
basic approach to engineering seismic risk analysis,
which can be integrated with random vibration analysis
to compute the total risk. In this section, we shall
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discuss some extensions, and comment on possible im-
provements,

in the range 0.20 to 1.10. Integrating over the error
term In the seismic risk analysis, it can be shown that
for fixed R, that is, for a point source

Limited magnitude distribution

=P(Y >y =(-k,) ¢+ (Z/0)

In the preceding treatment, the earthquake magnitude 7 Bo)
could take any value above the threshold value m, On +k,, OF e (B* 6°/2b5) exp (Brny) X
physical grounds it can be argued that there should be ? )
a [imit on the size of earthquakes“. Such a limit can s
be established on the basis of historical or geophysical o (V)

. . R , (23)
data for a region or a source. Let m, be the upper limit \blj

on the magnitude of the earthquake. The probability
density function for M can be expressed as

p,[(m) = kmlB exp [ — B (m —m,)),
m, < ms< mg, (18)
where
k, = {1—exp[—B (m —m)]}", (19)

is the normalizing factor. The restriction on magnitude
to an upper limit m,, defines a focal distance r,, beyond
which no earthquake will cause ground motion in excess
of y. This distance is

= (b)) "> exp (b, m/b,), (20)

and the distribution for Y, (f) can be expressed as®,

Fy:J (y, 1) = exp [wﬁyt(l —k, )] X
exp [k, C9,G,y™1, y2y; 1)
where ': G, 1s given by equation (17). The subscript
y on V and G implies that sources, or part thercof, are
considered within the radius r,. Computations of seismic
risk show that the major eontrlbutlon to risk comes
from more frequent smaller earthquakes close to the

site, and the risk is not significantly decreased by the
upper-limit on magnitude",

Scatter in attenuation relations

The attenuation relations, equation (2), provide only a
erude correlation with the large scatter of observed
data’. To incorporate the effect of scatter on seismic
risk estimates, the attenuation relations may be defined as

= (h, "R ™M e (22)

where € Iy an assumed random error, defined as the
ratio between observed and measured ground intensities.
Csteva’ showed that € is approximately normally dis-
tributed with zero mean and standard deviation o, lying
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where ¢* (.) is the complimentary cumulative distribu-

tion function of the standardized Gaussian distribution,
and

Z = In(y)-In[b, exp(b,m)R™]. (24)

The above result for the point source can be used
to compute the excedance probability for arbitrary sources
numerically. The effect of including the attenuation law
uncertainty can result in almost doubling the computed
risk.

Cornell and Vanmarcke"” examined in detail the sen-
sitivity of seismic risk estimates to various parameters
and found that risk may be sensitive to the focal depth
H, to the attenuation constant b,, and to the ratio
B/b,. Esteva'® suggested replacement of focal-depth H,
by ‘effective focal-depth’ (H'+20 )%, to improve the
fit in the near-source zone. Basu® has fitted uniform
and truncated lognormal distributions to the focal depth
data for the Indian subcontinent and incorporated these
In seismic risk analysis.

Random process models of earthquake
ground motions

Housner'’ was the first to suggest that acceleration
records of earthquake exhibit characteristics of random-
ness. If a large number of ground motion records were
available for a particular site, the parameters of a random
process model could be determined directly by statistical
analysts. However, this approach is not possible at
present in any part of the woild, due to availability of
only a few strong-motion records. It, therefore, becomes
necessary to use considerable judgement in constructing
and validating stochastic models of ground motion on
the basts of a few available records at a site, or at
comparable locations coupled with seismological and
geological data, and local site condttions,

Let Z (1), i = 1, 2, 3, represent the thice components
of ground displacement at a point due to an earthquake.
Consistent with general characteristios of stong-motion
earthquakes, each component of the ground acceleration
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can be expressed as

ZMN=AMYu: 0t T,

= (; otherwise, ¢t > T, (25)
where i = 1, 2, 3; A () are slowly varying random
functions of time called the envelope; Y are a segment
of stationary random processes; and 7’ is the duration
of the motion. Thus, each component of ground ac-
celeration 1s a realization of a nonstationary random
process. The stochastic model represented by equation
(25) may be described to varying degrees of completeness
by the joint distribution functions, the joint moment or
spectral functions and other properties such as level
crossings, peaks, etc.

We shall first discuss the properties and models of
individual components. Three types of basic models,
and their minor variations reflecting increasing level of
complexity, have been used to model earthquake ground
acceleration: (i) white noise'™", (ii) stationary process®”?!
and (iii) nonstationary process > °.

If the short duration of initial rise and exponentially
decaying tail are disregarded, the central strong-motion
portion of acceleration records on firm ground can be
treated as a segment of stationary random process.
Byrcroft'® showed that properly scaled segment of white
noise have response spectra similar to the response
spectra of real earthquakes and can, therefore, be used to
model the strong-motion portion of ground acceleration.

The stationary process noise model is an improvement
over the white noise as it can be shaped to represent
the frequency characteristics of the actual ground mo-
tions. The model makes it possible to incorporate the
etfect of local soil conditions explicitly. A segment of
stationary process is, therefore, a more realistic model
of the strong-motion portion of ground acceleration
records. The following analytical expression due to
Tajimi”’ based on the work of Kanai®’, called Kanai-
Tajimi spectrum, has been extensively used to represent
the power spectral density (psd) of ground acceleration:

1 +4 8 (0/0,)

¢ (0) = ¢, . - (26)
[1~(o/®) I'+4§; (0/0,)

A filtered white noise with psd given by equation (26)
can be generated by the following second order filter

U+28, 0, U+ol U = W (), (27)

where W (1) is white noise with psd ¢, and
Z(= U@+ W(). From an analysis of actual records,
it is found that {, = 0.6 and w, = 5m correspond closely
to the spectral properties for firm ground. For a specific
site, the parameters §, and o, should be chosen suitably
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to represent local site conditions.
The variance and other spectral parameters for the
Kanai-Tajimi1 spectrum are given by

2 = E (1440
0-; 2 Cg (1 Cg) b
Qg = (Aj/lﬂ)vz ~ 2.1 ﬂ)g ;
/ 5 \IXZ
S5 =1+ M = 0.67. (28)
g \ b lﬁ)

In equation (28), cut-off frequency w, = 4@, and
C, = 0.6 (ref. 28). Bolotin** proposed the following
expression to represent a comparable auto-correlation
function for stationary ground acceleration:

R(t) = o, exp(—a)ltl cosPr. (29)

The nonstationarity in the ground acceleration records
arises primarily through envelope functions A (¢) in
equation (25). These are slowly varying random functions
of time. A simple and adequate nonstationary model of
ground acceleration can be constructed by assuming
A () = A(2) to be a deterministic function and Y, (r) a
set of stationary random processes with specified psd.
The model may be constructed either by multiplying a
segment of filtered white noise by a modulating function
(MFWN) or alternatively by multiplying white noise by
a modulating function first and then filtering the product
process (FMWN). If the filter characteristics and the
modulating functions are identical for the two models,
the difference in their characteristics depends on the
smoothness of A (r). For earthquakes with long quasi-
stationary motion, both models yield similar charac-
teristics.

Several functions have been used to model the en-
velope of the ground acceleration records. The following
expressions are commonly used:

Iyengar and Iyengar”
A = (A,+A) exp(—at) H(D);

n=1or2 a>0. (30)

Shinozuka and Sato™
A = A, [exp(—at)y—exp(—-bt)] H (1)
b >a> 0. (31)

Jennings et al.™

A@) = A,/t)" H(), 0<t<t

= AyH(t-1), L <t<t,, (32)

|
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= A, expl—b(r-1) H(t-1),

L<t<t,,

= A [ 05c+d(T' 0] H(t-1,), t>t,,
where H () is heaviside unit step function.

The envelope functions represented by equation (32)
cover significant features of a complete range of recorded
earthquake ground accelerations. Jennings et al.”® have
suggested suitable values for the parameters of the
envelope function to model four different types of
earthquake motions (A, B, C and D) which are considered
to be significant for engineering structures.

The envelope functions defined by equations (30) and
(31) are analytically simpler and are used extensively
tn theorettcal treatments. The nonstationary nature of
ground motions has a significant influence on the tail
value of the probability estimates, nonlinear response
and soil behaviour. Further, the stationary models are

inadequate for small near-field earthquake ground
motions.

Multi-component ground motion

We have so far discussed the stochastic models of the
individual components of ground acceleration during
earthquakes. Since the three components of earthquake
ground motion act simultaneously on a structure, it is
necessary to construct stochastic models which incor-
porate their joint properties. Also, since the choice of
axes along which the components of an earthquake is
recorded 1s arbitrary, it is necessary to establish relations
for the transformation of their properties due to the
rotation of the coordinate systems.

Consider the three components of ground acceleration
defined by equation (25) along the axes (123). Let
A (1) = A(f) be a deterministic function, and i’; (1) a
zero-mean, stationary random process. Then the elements
of the covariance matrix of Z, (f) are given by

K2 (,7) = E[Z,() Z (t+ D)),

AMAG+DELY (1) Y (+1), (33)

AOAQGE+T)[R ,,‘};('C)]; i,j =1, 2, 3.

Since the correlation time of the accelerograms is usually
very small, the effect of changing the coordinate direc-
tions on the covariance functions can be investigated
by considering equation (33) for T = 0, that is

EIZ,()Z, (0} = AW EIY, (0, (], (34)
which can be expressed in a matrix form
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. _ 42 ,
R;7(0) =A (R 5 (35)
Since Y () are stationary, the elements of variance matrix
R ;y are constants. Also R ;- is a real, symmetric and
positive definite matrix. It is, therefore, possible to find
a canonical transformation matrix P, such that

Y, () = PY() (36)

and

Rjy =P'R;;P = diag.(R,, R, R,,), (37)
where R\, 2 R,, 2 R,; are the principle variances of the
matrix Rgy, and the columns of P define the three

orthogonal principle directions’'. Further, from equation
(35)

R ; ; = A%t)diag. (R, Ry, Ry). (38)

Hence, the principal variances of Z are given by
A’ ()R, (no sum), i = 1, 2, 3. Note that variances are
functions of time but the principal directions are time-
independent. (If different modulation functions, A, (D),
are used for each component, the principal directions
will be time-dependent.) Under the assumptions stated
above, 1t follows that the components of ground motion
are correlated, but it is always possible to find at least
one set of three principal directions along which the
components are uncorrelated. The variances along these
three principal directions represent maximum, minimum
and intermediate values.

By analysing six different strong-motion records, Pen-
zien and Watabe' concluded that:

(1) the ratios of the minor and intermediate principal
variances to major principal variance are of the order of
172 and 3/4 respectively, (ii) the principal values of the
cross-correlation  coefficients [p,=(R,~ R )(R,+R o)
P,» Py and p,, are approximately 0.14, 0.2 and 0.33
respectively, (i) the major principal axis is generally
in the direction of the epicentre and the minor principal
axis is vertical, and (iv) the directions of principal axes
are reasonably stable over successive time intervals. It
is, therefore, reasonable to assume the sanmie envelope
function, A (1), 1n the three directions.

A significant conclusion of the above discussion is
that the three components of ground acceleration can
be modelled as mutually uncorrelated random processes,
provided they are directed along a set of principal axes
with the major principal axis directed towards the ex-
pected epicentre, and the minor principal anis directed
verfically. Hadjian™ analysed the correlation properties
ot the horizontal components of recorded ground motion
to obtain the probability density tunction of the cor-
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relation coefficient. Recognizing that the uncertainties
in the value of the correlation coefficient arise due to
two distinct sources, geometric and seismological, Had-
jlan synthesized a probability density function shown
in Figure 3. He suggested that an ‘equivalent’ rectangular
distribution may be used for design codes and simulation

purposes.

Estimation of model parameters

Random process models of earthquake ground accelera-
tion are used for two purposes: (1) random vibratton
analysis of system response to earthquake excitation,
and (i1) stmulation of an ensemble of ground acceleration
records for Monte Carlo type studies. In either case, it
1s essentital to determine the parameters of the. model
and to validate it. This is done by using both, available
seismological information, and past earthquake records
at the site, and at comparable locations. The peak values
of ground motion parameters, duration of motion, etc.
can be estimated from attenuation laws, if potential
sources can be identified. Local site conditions can be
incorporated in modelling the frequency content. The
available ground motion records can be grouped into
large, medium and small earthquakes™ and an ensemble
of earthquake records can be compiled for each group,
after amplitude and time scaling, if required. The
parameters of the model can be estimated on the basis
of such information. The limitation of data is a serious
problem 1n earthquake engineering and, therefore, con-
siderable ingenuity and judgement is required for esti-
mation of model parameters.

Random process models of earthquake ground acce-
leration 1nvolve two major components—the modulating
function reflecting the nonstationary process reflecting
the frequency content. The estimation of parameters and
validation of the model 1s carried out by using a
combination of the following characteristics®"*%*%;

(1) peak ground acceleration (A)); the time (¢ ) at which
the peak occurs; ratio (¢, /T’),

(ii) time-dependent variance; intensity moments'

(11) rate of zero crossing (N,), rate of maxima (N_),
ratio (N, /N,),

(iv) covariance function; psd; spectral moments’,

(v) average response spectra, response envelope spectra,
time response spectra’ and

(vi) spectrum intensity.

In time-series models, parameters are estimated on
the basis of a comparison between estimated statistics
of generated sequences and the statistics of actual records.
Digital processing technique may be used to estimate
the parameters of FMWN model relying on a single
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‘equivalent’ rectangular distribution (Hadpan, 1981)
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record” : Parameters of stochastic models can also be
. . . . .26
estimated from theoretical considerations™*°.
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