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Pancharatnam, virtuoso of the Poincaré sphere:

an appreciation

Michael Berry

H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK.

SIVARAJ Ramaseshan graciously invited me to write an
essay review of the collected works of S. Pancharatnam.
As a partial response to this invitation, I am happy to
show my admiration of Pancharatnam by providing the
following comments on three of his papers.

Geometric phases in polarization optics

Early in 1987, I received from Rajaram Nityananda a
reprint of his paper’ with Ramaseshan, drawing attention
to Pancharatnam’s anticipation, in 1956, of the
geometric phases that had been in fashion since 1983
(and to some extent still are). Regrettably, 1 did not read
their paper properly, and missed its main point. But I
was fortunate to visit Bangalore in July 1987, and
Ramaseshan met me and I came to appreciate the rele-
vance of Pancharatnam’s paperz. Ramaseshan honoured
me with what he thought was the last copy of
Pancharatnam’s collected works® (now, more have come
to light). Slowly, I realized that Pancharatnam’s phase
was something I had to understand. This was not easy
because his arguments made heavy use of the geometry
of the Poincaré sphere, which I knew about but had little
facility with. For the long flight home, I set myself the
task of interpreting Pancharatnam’s discovery in more
modern and general terms.

That flight was a revelation. I learned that not only
had this young fellow of twenty-two created the simplest
example of the geometric phase, but that he had also
pointed out a feature (the definition of phase difference
described below) that had not, by 1987, been ercerved
in any of the many papers developing my work” of 1983.
There and then I decided to follow the example of
Nityananda and Ramaseshan, and write an expositiﬂns of
Pancharatnam’s phase that would bring the full
originality of its conception to a larger readership.

Pancharatnam was inspired by his mentor C. V.
Raman to study the complicated interference figures
produced by light beams traversing crystal plates (see
page 232, box). For this he needed to compare the
phases of waves in different states of polarization. A
given state of polarization (given for example by the
eccentricity, axes and sense of traversal of the ellipse
described by the tip of the electric £ or D vector) Is
represented by a point on the Poincaré sphere. However,
this does not specify the phase of the vibration: all states
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related by a phase factor correspond to the same point
on the sphere. Therefore phase is an additional quantity,
to be attached to points on the sphere if light beams are
to be described completely.

To understand interference, it i1s necessary to know
not the absolute phase of a wave but the phase
difference between light beams in different states of
polarization. Apparently, nobody had asked this simple
question. Pancharatnam did ask it, and gave a simple
answer: the phase difference between two beams 1s that
phase change which when applied to one of them
maximizes the intensity of their superposition. It was
instructive® to express this in terms of more general
mathematics (as used for example in quantum mecha-
nics). Each beam is represented by a spinor with two
complex components (corresponding for example to the
amplitudes and phases of the components of the D
vector perpendicular to the propagation direction). For
two beams |4) and |B), Pancharatnam’s rule implies that
the phase difference is the phase of their complex scalar

product:

phase difference between |4) and |1B) = phase of
(41B)- (1)

In particular, the beams are in phase (intensity of
overlap a maximum) if the scalar product is real and
positive. Nowadays this is known as ‘Pancharatnam’s

connection’. It can be derived from a more general rule,
in which |4) is transported to a neighbouring state
4 + d4) (for example by passing the beam through an
appropriate polarizing crystal), with the phase defined

by the requirement
(4] d |A4) = 0, where d|4) = |4 + dA) — |A). (2)

It can be shown® that if this is integrated from IA) to |B)
along the shorter arc of the great circle connecting their
representative points on the sphere, then |B) is In phase
with |4). The rule (2) is called parallel transport because
it corresponds to moving |4), regarded as a unit vector
perpendicular to the radius of the sphere and attached to
its representative point, without turning it about the

radius.
Pancharatnam showed? that this natural stipulation of

phase has a remarkable property. It is non-transitive:
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if {4) is in phase with |B), and |B) is in phase with a third
state |C), then |C) need not be in phase with |4). Indeed,
if |C) is in phase with a state |[4”) represented by the
same point on the sphere as |[4), then the phase factor
accumulated after this cycle of polarization states,

embodying the phase difference between
(A|A7) = exp{—3i Q4nc },

where .5 is the solid angle of the sp
ABC. 1t can be shown that the same r
more general cycles (e.g. smooth loops)

|lA) and [47), 1s

(3)

herical triangle
esult holds for
when the state

1s continued according to the connection (2). Then the

solid angle 1s that of the loop, and th
vector does not return to its original di
the nonintegrability of this connection.

e fact that the
rection reflects

What Pancha-

ratnam actually stated was not exactly the result (3), but

an unsymmetrical version equivalent to 1
l4) and |B), which are in phase, are pas

t: 1f two beams
sed through an

analyser bringing them to the state |C), their phase

difference is — 3 Q¢

In its original form, the geometric phase I found in
1983 concerned not polarization states of light beams,

but quantum states of particles, that 1is

, Hilbert-space

vectors satisfying the Schrodinger equation. In the

adiabatic limit where the environment

of the system

(that is, its Hamiltonian) changes slowly, the parallel
transport law (2) applies, mutatis mutandis, and, being
nonintegrable, generates a geometric phase factor when
parameters on which the system depends are taken round

a cycle. The generalization of the solid a

through the cycle (in parameter space
‘phase field” (mathematically, a 2-form)*.

ngle is the flux
) of a certain

In special cases where the phase involves an actual
solid angle, this is because the phase field is that of a
monopole in parameter space. For spinning particles

with angular momentum #nh,
monopole is —n, so the phase 1s —nfl.
Pancharatnam situation 1s analogous

the strength of the

Therefore the
to the further

specialization to spin 1/2, which, as is well known, is a

model for any 2-state system. There w

as an apparent

discordance here, between the fact that photons have

F (O for smooth

spin 1, leading to geometric phases of A
cycles of their spin direction (e.g. In

fibres®), and Pancharatnam’s —1/2€2. But it was clear

that there is no contradiction, because

angles are different: the first is in the space of
propagation directions k& for light with a fixed state of

coiled optical
5

the two sohid

polarization, whereas the second is on the Poincare
sphere of polarization states for light travelling in a
fixed direction k, so that, because of transversality, there
are only two states (e.g. components of D perpendicular
to k).

lgnorant of Pancharatnam’s work, I had also

calculated geometric phases for the case he studied, that
is in a light beam whose state of polarization is changed.
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I envisaged”™ ’ a medium whose birefringence and gyro-
tropy were changed smoothly along the beam path — for
example by a varying electric field (Cotton—Mouton
effect) and a varying magnetic field (Faraday effect).
I was astonished (and not a little humbled) to learn that
Pancharatnam had had essentially the same idea (with

discrete, rather than continuous polarization changes)
thirty years earlier. This was one of several areas in
which the geometric phase had been anticipated®.

In spite of its startling originality, Pancharatnam’s
paper2 was completely ignored until Ramaseshan and
Nityananda' made us aware of it. Now his contribution
is properly recognized, and his paper has been cited
many times. 1 will not review subsequent work
(Bhandari does so in his accompanying article), but will
simply draw attention to two very different applications
of the idea. In one, Schmitzer, Klein and Dultz’ remark
that the solid angle €24~ can change much faster than
the angle of rotation of an analyser (representing C with
A and B fixed), and propose this as the basis of a new
type of optical switch. In the other, Nye'® employs
Pancharatnam’s connection in a study of phase and
polarization singularities in electromagnetic waves that

vary in space.

Mirages

Although the young Pancharatnam and the elderly
Raman were intellectually (as well as consanguinously)
close, they wrote only one paper” together, about the
mirage. When I read it (on the 1987 flight) I realized
that it was based on a misunderstanding of the connec-
tion between wave optics and geometrical optics. I had
suspected confusion on this point since a conversation in
1976 in which Ramaseshan described the Raman-
Pancharatnam ideas to me.

Their claim was that the mirage cannot be explained
in terms of rays but requires the wave theory. By
considering light propagating in the air above a hot
surface, considered as a stack of slabs with slightly
different refractive indices, they convinced themselves
that refraction could never make a downward-sloping
ray turn upwards, because a ray once horizontal would
remain so. In other words, refraction could never
simulate reflection. This was a misunderstanding of the
law of refraction in a continuously-varying medium,
based on an incorrect limiting process. When applied to
mechanics, the same argument (upside-down) would
predict that an obliquely-fired projectile would never
fall but would continue horizontally on reaching its
greatest height. The correct slab limit shows that
transverse gradients of refractive index cause rays to
curve, just as transverse forces cause particle paths to
curve.

Why dwell on a mistake, in what is supposed to be an
appreciation? To make the point tha errors of first-
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rate scientists can be both instructive and productive.
After concluding, wrongly, that the mirage cannot be a
refraction effect, they set about constructing a wave
theory for the neighbourhood of the layer where,
according to them, the rays ought to turn but do not.
This is the level of the caustic, where the air acts like a
mirror. By using the mathematical analogy between the
licht wave equation with linearly varying refractive
index and Schrddinger’s equation for quantum particles
in a region of constant force, they expressed the wave in
terms of Bessel functions of order + 1/3. Although this
wave theory was constructed on the basis of a confusion,
there is no doubt that it is correct. Indeed they
successfully carried out experiments with heated plates
to test several of its consequences.

One irony remains. In contrast to the startling
originality and prescience of the polarization phase, the
Raman-Pancharatnam theory of waves near a caustic
turned out to be not a discovery but a rediscovery.
Airy' had formulated essentially the same theory in
1838.

Propagation along singular crystal axes

A treasure among Pancharatnam’s papers, that, if
anything, pleased me more than his phase, is a
surprising special case’” of wave propagation in absorb-
ing anisotropic crystals. In transparent crystals, the two
polarization states that travel unchanged through the
crystal in any direction are orthogonal (and so
represented by antipodes on the Poincaré sphere). With
absorption, the eigenpolarizations are no longer
orthogonal, and there are even particular crystals and
propagation directions (along the ‘singular axes’) tor
which they coincide, so that only one polarization can
propagate.

Pancharatnam concentrated on this case, and studied
what happens when the orthogonal polarization, which
cannot propagate, is introduced into the crystal. Earlier
authors were, he claimed, wrong: they had thought such
a wave must be reflected. He argued that, on the
contrary, the polarization would change gradually into
the state that does propagate, and moreover would grow
stronger (by a factor increasing linearly with distance)
than a wave of the same intensity introduced with the
correct polarization. I found this conclusion hard to
believe, and his arguments (again based on Poincaré
sphere geometry, see page 233, Ranganath, G. S., this
issue) difficult to follow, and embarked on the task of
reconstructing the theory in my own way (as I have
already mentioned, it was a long flight). The results
vindicated Pancharatnam completely, and moreover
produced an analytical expression for the wave which
appears nowhere in his papers (although I believe he
must have known it). The expression is worth present-

ing,
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Let the beam travel in the z direction. A model crystal
exhibiting Pancharatnam’s phenomenon has dielectric
tensor with transverse components

(€ €4\ [ ia 2(b-a)
_(ny Eyy)“{%(b—a) ib ) )

This matrix has a single degenerate eigenvalue and
a single eigenvector col(l1, i)/¥2, representing circularly
polarized light. For the medium to be anisotropic, we
must have a#b. For the medium to be absorbing,
the rate of energy dissipation must be positive, which
implies that the Hermitian matrix i(e'—e) must have
positive eigenvalues; when applied to (4) this gives the
requirement

Re{a+b)>|a~b]|, (5)

which is satisfied by a and b real. If the only other non-
zero dielectric tensor component is £, , then not only the
electric D but also the E vector is transverse, and
Maxwell’s equations reduce to

J2D + ke - D =0, (6)

where k is the free-space wave number.
The solution of (6) given (4) with the initial polarizat-
ion

D(0) = [“) )

[%

1S

D(z)= exp{-——%kz(l ~i)Va+b}

x.(”)-—}kz(""bl(l—i)(ﬁiv)m , (8

(4 a+b

as can be confirmed by substitution. For the
eigenpolarization, u =—1v = 1/N2, and the term involy-
ing z is zero. For any other initial polarization — in
particular the orthogonal one u = +iv —the term involv-
ing z grows relative to the term not involving z, just as
Pancharatnam discovered. (In spite of the increasing z
factor, the energy flow into the medium must decay,
because the medium is absorbing, and this is ensured by
the exponential prefactor. A direct proof from (8) is
lengthy, but the result follows from the fact that the
dissipation rate (positive) is minus the divergence of the
Poynting vector.)

Pancharatnam’s law of singular axis propagation is an
example of a general mathematical phenomenon: evolu-
tion driven by a non-Hermitian matrix M with a
degenerate eigenvalue. The lack of Hermeticity 1s
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fundamental, because it drastically alters the nature of Now, as we remember Pancharatnam’s untimely
the degeneracy. If M is Hermitian (as in the gquantum  death in his creative prime, and celebrate his youthful
mechanics of spin), there are (in the simplest case) two  achievements, 1t is time to look again through all his
orthogonal eigenvectors corresponding to a degenerate  work. Who knows what further delicious physics this
eigenvalue, and in the neighbourhood of the degeneracy  will reveal?

(in the space of parameters on which M depends) the

eigenvalues form a double cone, each sheet of which

corresp{}nds to an eigeHl’falue_ If M is not Hermitian (as 1. RﬂmﬂS¢Shﬂﬂ, S and NitYﬂﬂanda,, R. . Cur?'. SC-'L, 1936, 55, 1225—
with (4)), there 1 nly one ei vec 1226.
(4)) " 1S only h genvector at the oo atnam, S. Proc. Indian dcad. Sci. 1956, 44, 247262

dfegeneracy, W ICh. is a br-anc: point for the two (reprinted in ref. 3, pp 77-92)
gigenvalue sheets in its neighbourhood, and around 3. Pancharatnam, S, Coflected Works, Oxford University Press,
which each eigenvector turns into the other. While . 15975. MLV Proc R Soc. Londom 198

.. . . . Berry, M. V., Proc oc. London, 4, A392.45-57.
writing this I found that the mirror Pmperty ofa? stack of 5. Berry, M V., J Mod Opt, 1987, 34, 1401-1407.
transparent plates (such as glass microscope-slide cover 6 Tomita, A and Chiao, R. Y., Phys Rev. Leit, 1986, 57, 937-
slips or acetate overhead-projector sheets) depends on 940.
precisely this phenomenon of a non-Hermitian matrix 7. (B}ch:%V-,é“FFuﬂdfﬂm;f;ﬂ :lspecrs G;fg ggﬂrﬁir;ghzgiy (eds

: : : orinl, V. and Frigenio, , Plenum, , Series
with a degenerate eigenvalue (I thank S. Klein for vol. 144, pp. 267-278

posing this problem); so does the matrix governing
waves incident at the critical angle on a slab of lower
refractive index (I thank G. N. Borzdov for telling me this).

Berry, M. V., Phys Today, 1990, 43 (12), 34-40
Schmitzer, H., Klein, S. and Dultz, W., Phys. Rev. Lett, 1993,

71, 1530-1533.
10. Nye, I F., 1n Sir Charles Frank, OBE, FRS An Eightieth
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The phenomenon of propagation along singular axes Birthday Tribute (eds. Chambers, R. G, Enderby, J. E., Keller,
(known as vougt waves) IS Now well understood, as a A.. Lang, A. R and Steeds, J W), Adam Hilger, Bristol, 1991,
result of extensive and definitive theoretical work by Lo 220%31{[ 1 Panch S Proc Indian Acad. S

: 14 I. Raman, C. V. and Pancharatnam, 5., Proc. fndian Acaa. dci.,
Fedorov and his colleagues™. In a crystal slab, the two 1059, A49, 251-261 (reprinted in ref. 3, pp. 211-221)

waves travelling in each direction can be made to 12. Airy, G. B, Trans Camb. Phil Soc., 1838, 6, 379-403.
degenerate in several ways, leading to coordinate 13, Pancharatnam, S, Proc Indian Acad Sci, 1955, A42, 86-109

: 115 2-55)
dependence that can be not only linear but quadratic (reprinted i ref 3, pp 3
(for three-wave degeneracy) or cubic'® (for four-wave 14. g;’;ko;’;gg’;; 1;45':95?0”‘10“ G. N and Fedorov, F. L, /. Mod
degeneracy). However, Pancharatnam’s pioneering 15 Borzdov, G. N., J. Mod Opt., 1990, 37, 281-284.
paper is little known and infrequently cited. 16. Borzdov, G N., Opt. Commun., 1990, 75, 205-207.
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