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Bcfore we discuss the book, let me
becin by motsvaling the problems which
this booek addresses 1tself to.

A svery well-hnown problem, belteved
to have been posed by Archimedes, is
the following: find a solution (with
Y203 in micgers {(=whole numbers),
ta the equation

X2 _3729494Y% = 1.

Another  well-known  theorem  of
Ramanujan-Nagell assefis that the only
solution {in ntegers Xx, n) of the
equation X? +7=2" are x =1}, 13, %5,
+11. +181 and the corresponding values
ofnaren=3.4.57, 15

These problems are by no means
peculiar or special. Number theory
addresses itself to solving equations in
finite number of indeterminates, and
with integer coefficients. The problem,
almost always. is to find all integer
sojutions to a given eqQualion or 1o
determine the set of all rational
solutions. For example, let us consider
the e¢quation of the Archimedes
problem. We may obviously rewriie it as

XPodYi=(X- JdVYX+ Jd¥)=1,

where o =4729494. It s immediate,

upon wnting z=x + Jiy, z =I‘JEJ’,
that if z,, z; correspond in the above
fashion to a pair of solutions (x, y),

(x.V), then zz,=xx'+dyy +Jd
(xy’ +x'y} cocresponds to the solution
X=x¥+dyy, Y=x7 +xy. Similarly,
we may factorize X+7= (x +E)
(x~J~7). Notice that in both the

situations we are paturally led to
consider propertics of quantities of the

form x +yJ£_i for suitable ¢ and where
x, y are either rational numbers or
integers. This leads to the notion of
algebraic numbers and algcbraic num-
ber fiefds. Thus for example in the

- .

'For the detailed discussion of this problem
sec Diphantus of Alexandria by T_ L. Heath,
page 21. The smallest values of X, Y
satssTywng this equation are 46, and 41 digit
numbers!
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above situation the set @ (JE} = {x +

vgylx.ye Q) is an example of an
algebraic number ficld. In general, an
algebraic number field (or simply a
number field) is obtained by consi-

i |
dering all the expressions 2, x, &'

where a is a root of some irreducible
notynomial f{X) with rational coetfi-
cients of degree n, and where x, is
rational rumber; these expressions can
be added, subtracted, maltiplied and
divided in the usual way; the degree of f
is called the degree of K (over Q). The
clements of a number ficld are called
algebraic numbers. Every element of a
number field satisfies a polynomal
equation with integer coefficients.
Number fields have many properties
similar to the field, Q, of rational
numbers. Just as integers, Z, form a ring
contained in the field of all rational
numbers, in every number ficld X, there
is a special subring R« K, called the
ring of algebraic integers of K and
which consists of all elements of the
field which satisfy meonic polynomial
with integer coefficients. This ring R 1s
a free Z-module of rank equal to the
degree of the field K. By the phrase
‘computation of ring of integers R’ of K|
we mean ‘computation of a Z-basis for
the ring R’. It is possible to extend the
familiar notions of arithmetic like
divisibility etc. to elements of R. For

instance, if K=0 (-J—'? ), is of degree
two over (3, and

Jl (0 +v=7)
X % >

R=

}’LI:J'EZ}-

Then w¢ are naturally led to the
question whether the ring R shares any
properties with the ring of integers Z. In
pacticular we can ask if the property of
uniqueness of factorization is valid in R.
For instance, the solution to the
Ramanujan-Nagell problem rests on the
fact that in the ring of integers of

Q(ﬁ ), the property of unique
factorization is valid.

It is konown that not every number
field has unique factorization property.
For example consider the case
6= 32=(1+J=5) (1—v-5) and it
can be shown (hat uniqueness of
factorization fails to be valid in the ring

of mntegers of Qf q’:; }. There is natural
measuse of the failure of wunique
factorization. This is the class group of
the number field, defined as the group

—

of all fractional jdeals of the number
field modulo the group of principal
fractional ideals. The class group 1s a
finite group and its order is called the
class number of the ficld, and is denoted
by Ax. An elementary result asserts that
unigue factorization is valid in K if and
only if Ay = 1. The class group is a very
camplicated (and subtle} invariant of
a number field and even for very simple
ficlds class number can he very large,

for instance, for K= Q(+V-23201), the
class number 1s 292. Many questions of
number theory can be solved by using
information about the class group
For example, a famous theorem of
Kummer asserts that the famous
equation of Fermat, x* + y? =z/, where
p=3 is a prime number, has no
solutions in integers x, y, z and all
three nonzero, if p does not divide
the class number of the field
Q(c*™?), where ¢*™7 is a primitive pth
rooi of 1.

Similarly, in problem  of
Archimedes, it that any

solution z=x + ﬂ y of the Archimedes
equation is an algebraic integer in the

corresponding field Q(\Ef— } and more-

OVEr as x — ﬁy = |fz shows that 1/z 1§
also an algebraic integer in R. An
algebraic integer z in R such that
l/z € R is called a wnif of R. Thus the
problem of Archimedes can be solved if

we can find 2 unit X + 47294947, with
Y0, in the ring of integers of

Q (J4729494 ). One observes that the
units of a number hHeld form a
commutative (= abelian) group, denoted
by Uy, under multiplication. A well-
known theorem of Dirichlet asserts that
Uy is a finitely generated abelian group;
in other words, up to elements of finite
order, {/y has a finite basis as a Z-
module. The theorem even gives the
exact number of basis elements requi-
red, this number is called the rank of the
unit group Uy.

The determination of the group of
units and the calculation of class
number are important problems of alge-
braic number theory.

Having motivated the problems, let us
discuss the book in detail. The book
being reviewed is based on lectures by
the author in a seminar at Disseldorf,
hetd in 1990. There has been a lot of
progress in recent times on the computa-
tional aspects of algebraic number
theory, and the author gives a rapid
introduction 1o some of the recent
developments in the subject.

the
is evident
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After a briel introductory chapter,
which provides motivation for the
nroblems discussed in this book, the
next two chapters introduce the basic
tools which are used in the algorithms
developed in this book.

Factorization of polynomials over
finite fields is an 1mportant tool in
algebraic number theory, and the author
presents material needed for this in one
chapter. There are several methods
available to factorize polynomials 1n
one variable over a finite field, and the
author presents two of these — the
Beriekamp’s algorithm and the method
of Cantor and Zassenhaus — which have
become standard nowadays.

The next chapter starts with basic
notions and results from matrix
reduction theory like Hermite and Smith
normal forms of matrices with integer
entries, and proceeds to a discussion of
lattices in R” and a quick recapitulation
of the main results from Geometry of
Numbers fike Minkowski’s convex body
theorem, and Minkowski’s theorem on
successive minima. A major part of the
chapter is devoted to reduction theory of
lattices. In this section, the author
outlines one of the most notable, recent
development in the subject: the
development of LLL-reduction algor-
ithm. This algerithm, proposed by A. K.
Lenstra, H. W. Lenstra Jr. and L.
Lovasz, has become a fundamental tool
in computational aspects of algebraic
number theory. For instance, as an
application of this algorithm, Lenstra ef
al. proved that problem of factoring a
polynomial (in one variable) with
integer coefficients into irreducible
factors, can be done in polynomial time
(in other words, they produced an algo-
rithm to do the factoring, in which the
number of steps required is a polyno-
mial in the degree of the polynomial).

Given two vectors u, v in R”, we can
give an order relation between them by
using their norms (the norms being
taken with respect to the standard norm
on R™). In other words we say u <v if
Hufl<( v This gives a partial order
on vectors in R”. In particular, if L is a
latice in R”, then this gives rise to a
les1cographic partial erder on the set of
basis vectors for L. A basis of L which
1s minimal with respect to this order is
called a reduced basis for L; such a
basis has. many nice properties. In
general such a basis is not unique and
also difficult to compule. A weaker
notion of reduced basis was introduced
by Lenstra ¢f al. We bricfly recall it here,

If L is a lattice with vy, ..., v, a5 a
basis, then let v{,..., v{ be an ortho-

gonal basis given by the Gram-Schmidt
orthogonalization process: thus

;=1
.« »
vV, =V, )u.'_,* v,
1=l

l<€j<i€k and whese
H, '-'-va;fll -,;;“1 for 1<j<k Then we

say that the basis vy, ...,y is LLL-
reduced if the {v, } and {v;} satisfy

where

Lojp, 1 212%0r 1 <5<i<k and

2. ety 12 3y, I} for
l<i<k

The LLL-reduced basis does not have as
niceé properties a2s a basis which is
reduced in the earlier sense. The LLL-
algorithm provides an LLL-reduced
basis for the lattice L. The LLL-
algorithm is a polynomial time algo-
rithm, in the sense that the number of
steps required to produce the basis is a
polynomial in the number of basis
vectors. The definition of LLL-reduced
basis appears rather unwieldy but
despite this, the LLL-algorithm and its
variants have proved to be effective In
solving a large number of problems — as
can be scen from a large number of
applications that have been found for it.
There are two special applications of
this algorithm discussed in this chapter.
The first one is to the problem of
factorization of a polynomial in one
variable, with integer coefficients. As
has been mentioned  earlier,  this
problem was solved by Lenstra et al.
The second application is to a problem
of diophantine approximations which
comes up frequently in Number Theory.
Given vectors v, ..., ¥g+3 in RY, we
want to find iategers my, ... , M, + Such
that || &, m,v,| is small. Thus, for

instance, if vy =1, v, = +4d € R ar¢ two
vectors, then we want to find m, n

integers such that [m + nﬁ] is smal] -
and so — m/n s an approximation to

JE. A large number of problems can be
reduced to this problem. The approxi-
mation problem can also be solved by
means of a suitable variant of LLL-
algonthm, which was developed by the
authot of this book,

In this detarlled chapter, the author
treats the LLL-algorithm and related
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applications. This algorithm is explai-
ncd very mnicely by the author. The
treatment, though tucid, is lacking in
proofs. For instance, to illustrate the
apphcation of the LLL-algorithm to
factoring polynomaals, the author sket-
ches the proof of the theoremm of
Lenstira, Lenstra and Lovéasz. For the
proofs of the crucial lemmas, the reader
is referred to the orniginal paper of
Lenstra ef al. However, we note that for
an applications-oniented reader, this
treatment is sufficiently detailed and of
remarkable clarity in its exposition of
the LLL-algorithm. The author also
discusses the variant of the LLL-
algorithm, called the MLLL-algonthm,
which solves the approximation problem
alluded to above.

While it may be evident to the learned
reader that most of the complexity
analysis for the LLL-algorithm carries .
over to the MLLL-algorithm without
much difficulty, it would have been
convenient if the author had mentioned
a word or two in this regard. Now that
we are at it, we would like to point out
some other oversights on the author’s
part: in Lemma 3.6 on page 20, we find
that the symbol ¢’ appears twice in the
statement and does so with two different
meanings. in one context it 1s an
indeterminate and in another context 1t
appears as an integet subscript index.
Such ambiguities, though not very
serious, should be avoided.

There are two other algorithms of
interest which are discussed in this
chapter, but we shall mention them here
briefly. Given a lattice L generated by
v, ... » ¥ we want to find all vectors v
in L such that Jjv || < C, where C>01s
some given constant. This can also be
thought of as a problem of determining
all the lattice points in a region bounded
by a suitable e¢llipsoid. An algornhm
which leads to a sclution of this
problem is discussed here (the “qua-
dratic supplement’ aigorithm}. Another
algorithm  discussed here s the
algorithm to find the ‘ncarest lattice
point’.

The range of applications of the
MLLL and LLLe-algorithm bccomes
clear in the chapters on computations In
number ficlds. In a short chapter, the
author discusses the algorithms for basse
arithmetic  operations  Like  addition,
multiplication and division, 1 rumber
fields. There is a bricf discussion of the
basic properties of number ficlds, like
the fact that the nng of ntegers of
pumber ficld s free L-module ol rank
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ey

equal to the degree of the field.
Addition, muluphication are carried aut
mm number ficlds by means of this basis
representation.  lere the LLL  and
MLLL-algorithm find apphications.

After this bricf discussion of the
computational aspects of arithmetic of
number fields, the author embarks on 1
discussion of the problem which we
have atluded to earlier: the computation
of a Z-basis for the ning of integets of a
number field, the calculation of a basis
for the group of units, and finally the
class number of the ficld.

Let A=Q (a)l be a number ficld,
where ais aroot of /(X ) = 0. where fis
an 1rreducible polynomial of degree #»
with integer coefficients. Then it is a
standard fact that if the discriminant
d{f) of f is square-free then Z[qa] is
the ning of integers of K, and thus the
algebraic integers 1, o, &, ..., oa*"}
form a basis. In practice, however,
Z [a] is usually just a subring of K,
which ts a free module of rank »#. Such a
subring is called an order of K. Any

atder 1§ contained in the ring of integers
of K.

The problem of determining the basis
for the ring of integers of a number field
K is known (theorem of A. L. Chistov)
to be of the “same complexity’ as the
problem of finding square-free part of
the discriminant d{ [}, in the sense that
if one of them can be done by means of
2 polynomual time algacithm then so can
the other (we remark here that at the
moment there is no algorithm available
to dctermine square free part of an
mieger N and which is polynomial time
in log|N|).

There are two main algorithms which
are avatlable to determine the bagis for
the ring of infegers of a number field.
Both these approaches, called the
"Round-two-method’ and the ‘Round-
four-method’ respectively, are based on
ideas of Hans Zassenhaus. The idea is to
start with some standard order (for
instange, In the field K = Q (a). we take
the order Z[a]) in the ring of integers
and compute overorders (i.e. orders
containing the given order) which are p-
maxsmal for a prime p such that p?
divides the discriminant. For an order
R, if p* divides the discriminant of R,,
then its p-maxamal overorder is defined
by R,={xe R|Im>0, p"xe Ry}
Once one has determined a basis for all
p-maximal overorders, it is possible to
write down a basis for the ring of

572

Integers.  The author discusses the
methods of Zassenhaus which are used
in explicitly determining the p-maximal
overorders. These proceed via caleulat-
ion of ‘p-radicals’ and ‘ring of multi-
plicators® of orders. Here some
reductions are achieéved by factoring
polynomials’ modulo the prime p and
hfting these factorizations by Henselian
arguments to factorizations modulo hi-
gher powers of the prime,

Considering the importance of the
problem of computing a basis for the
ring of integers, it would have been
nicer if the aythor had discussed the
methods in more detail. For, we felt,
that the treatment of these methods is a
bit terse — and the reader coming across
this material for the first time may find
it ditficalt. It would bave also been
more convenient if the author had
summarized the ideas involved in these
two methods in an algorithmic form. We
also note that the ‘core’ part of the
‘Round-four-method’ has pnot been
presented here and so its description
here is not quite complete, though the
author assures us that in practice the
‘core’ part 1s not requited, and the
Round-two-method used instead.

As we have remarked earlier, a
theorem of Dirichlet asserts that group
of units Ug of a number ficld is a
finitely generated abelian group of rank
ry+ry—1 where r, is the number of
distinct embeddings of K —- R and r; is
the number of embeddings into C up to
complex conjugation. We will write p
for any one of the r, embedding into
real numbers and t for any one of the
embeddings into complex numbers, up
to complex conjugation (thus there are
r, of these r°s. Thus, for instance, for
the field Q(4/4729494), r,=2 and
r=0, and so the unit group s
generated (up to elements of finite
order) by a single unit, and for the field
Q{(VJ-23201) we have r,=0, ry=1 so0
that the uni group has rank =0 and
hence is finite. By the phrase
‘computation of the unit group’ one
means the computation of a basis for the
unit group, a basis for the unut group is
usually referred to as ‘fundamental
units’, For fields like Q(d), with
d > 0, there is a well-known algorithm
due to Lagrange which gives a method
of computing a fundamental unit is
based on continued fraction expansion
of ¥d. In genera), the unit group is

hard to compute. The proof of
Dirichlet’s theorem introduces a homo-
morphism from D:Ug >R

defined as D (g) = (log| p (), 2log it
(£)]),, whose image s a lattce
contained in a suitable hyperplane. This

homomorphism is of fundamental
importance in the theory of the wunit
group Uk.

Roughly speaking, a basis for the unit
group Is computed in three steps. First
on¢ needs a lower bound on a funda-
mental invariant called the regulator of
the unit group. The techniques to do this
lnvolve ideas from Geometry of
Numbers, more specifically, the bound
is obtained by means of results from the
theory of successive minima. Then the
next step (and the most important step)
s to construct a subgroup of the group
of units which is of finite index. Then
the last step is to enlarge this subgroup
of finite index. One needs a reasonable
upper bound on the index of this
subgroup. This is where the result of the
first step comes in. Explicit lower
bounds on regulator of the unit group
and the regulator of the subgroup,
together give an upper bound on the
tndex. In the final step, we enlarge the
subgroup by computing some additional
units and using the MLLL-algorithm to
compute a basis for the enlarged sub-
group. The major step in the algorithm
i3 the computation of a subgroup of
finite index, and to do this the author
discusses the lwo very interesting and
efficient approaches which have now
become available.

For the second step of the algorthm
we  have two different methods:
‘Dirichlet’s method” and ‘Lagrange’s
method’. Both the methods provide a
subgroup of finite index in the unit
group. The method of constructing a
subgroup of finite index in the unit
group is based on the obsecrvation that
the ring of integers of a K contains only
finite number of non-associate (two
clements are associates if their quotient
1s a unit) elements of bounded norm.
Thus by Ihsting a large number
of elements of bounded norm, we can
in principle generate units. For instance,
in  Dirichlet’s method, for every
jet\, ..., +ry} oOne constructs a
sequence of elements {y, 4 Jxzo of the
ring of integers R, such that (1) 5, 0= 1,
(2) Iy'fa1<ly!ll. where the bracketed
superscript indicates the embedding into
R or C, (3) [yU},,12lyY}] for i+, and

FREY
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finally (4) the 7% 44+ have norms
bounded by some positive censtant C. 1t
follows from Mmkowski’s theorem that
if the constant C is large enough then
such a sequence exists. Also since the
norms of elements in this sequence is
bounded by the constant C, for some
pair I, m, ¥, 5 Y.m are associates, i.c.
Y,.1/%.m is @ unit. One gets several units
this way (in fact »; + r, — 1 units). Using
the map D it is not hard to prove the
linear independence of these units.
The actual procedure of computing the
sequence 7, i is a modification of this
approach, and the author describes the
construction of the sequence 7,
detail. This construction is a generaliza-
tion of the method of Buchmann-Pethd
due to the author. The author also
explains that Dirichlet’s method can be
viewed as a generalization of the
continued fraction method. The method
of Lagrange is als0 a generalization of
the continued fraction method, based on
ideas of Buchmann, and depends largely
on methods of Geometry of Numbers.
This method is also treated in depth
here. This method also has applications
to testing 1f a given ideal is principal or
not — this comes up in the class number
calculations.

In contrast to the discussion of the
problem of determining a basis for the
ring of integers, the expasition of
the algorithms to compute a basis for
the group of units is elaborate and lucid.
The chapter ends with an example of a
computation of units using the methods
outlined in the chapter.

It has been mentioned earlier that the
class group is a measure of failure of
unique factorization in number fields. It
is a very subtle invariant of the number
field (and hence also the most
interesting). The class group ts defined
as the guotient of the group of fractional
ideals by the subgroup of principal
fractional ideal, a fractional ideal in K
i1s an R-submodule of X, a principal
fractional ideal is an R submodule of K
generated (as an R-module) by a single
nonzero €lement of K. An R-submodufe
of K which is contained in R 13 an ideal
of ithe ning R, an ideal J of R divides an
wdeal J of R if and only if S (‘to
coniatn 1s to divide’). Thus one can
extend the usual notion of divisibility
and primality to ideals of R. It is a
standard fact that every idcal of R can
be uniquely expressed as a product of

powers of prime ideals in R. In
particular, it follows that every
fractional ideal is a product of integer-
powers of prime ideals. Thus with ideal
arithmetic one has restored the
uniqueness of factorization; moreover,
if every prime ideal is principal in K
then unique factorization is valid in the
fiecld K. However, note that there are
examples of number ficlds where not
every prime ideal of K is principal. For
instance consider the case X = Q (4/-5),
the prime ideal (2, 1+ 4J=3) is not
principal. The fractional ideals form a
group under tdeal multiplication; and
the principal fractional ideals form a
subgroup. The c¢lass number is the index
of the subgroup of principal fractional
ideals in the group of fractional ideals.
Two fractional ideals are said to be
equivalent if they differ by a principal
fractional ideal. An ideal class i1s an
equivalence class of f{ractional ideals.
Thus to study the class group we have to
study arithmetic operations on fractional
ideals. For fields like Q (J/*d), the
class group has another equivalent
interpretation in terms of quadratic
forms (which was initiated by Gauss)
and for these fields there exist
alternative algorithms to compute the
class group.

The chapter on computation of class
number begins with a discussion of
ideal arithmetic. It is evident that any
discussion  of  algorithmic  ideal
arithmetic should be augmented with a
discussion of presentations =(and
representations) of ideals in pumber
fields, and there are several ways of
representing an ideal in a number field.
For instance, any ideal can be thought
of as a Z-submodule of the ring of
integers R, and hence be represented in
terms of a Z-basis or alternately, one
can use the special fact that every ideal
of R can be generated (as an R-module)
by two elements, and hence can be
specified by giving two generators.

A very well-known theorem of
Minkowski asserts that every ideal class
contains an ideal of bounded norm.
Minkowski's theorem provides the
bound explicitly. Using this bound, we
first write down a list of all pnmes p
which are less than or equal to this
bound and then calculute all prime
ideals in R which contain p, this gives a
finute hist S, of prime ideals (with norms
bounded as above). The class group (s
generated by thig finte set of prime
idcals. The main problem which cConmes
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up at this stage is that most of the time,
the list of prime ideals contains far too
many elements (even if the class number
is small) =~ for number ficlds of large
depree and discriminant this can be a
serious problem; another problem is to
determine all the relations (1n the class
group) which exist amongst the prime
ideals in our list. The first one can beg
tackled by trying to improve the norm
bound — this can be done for small
degree ficlds, in general reasonable
bounds exist under some conjectural
hypothesis. Thus it remains to find an
etlicient procedure to. determine all
relations (in the class group) amongst
these prime ideals. This is the
underlytng principle of the algorithm
presented in this chapter. The author
discusses a method of calculating the
class group which in principle mimicks
the proof of Dirichlet’s theorem on
units, The idea is to use a suitable
variant of the map D which we had
described earlier, this time from S-units
to a suitable real vector space, and
whose image is a lattice. This approach,
after suitable modifications, leads to a
suitable matrix of ‘relations’, called the
class-group matrix. In practice this
tends to be large and rather unwieldy.
1Jsing the reduction theory of matrices
developed in the earlier chapter, the
author indicates a procedure to compute
the class group. Note that this yields a
bit more information than just the class
number — it provides the complete
structure of the class group.

On the whole, we felt that the
discussion of the algorithm to compuie
the class group, which is presented here,
is terse, We would hke to reiterate that
it would have been nice if the method
was summarized i a coavenicat
algorithmic form. One also notes that
there is no discussion of alternate
methods available to compute the class
group: for small fields hke quadratic
ficlds, one has alternate methods
available to compute the class group
(using quadratic forms and theory of
genera). There is no discussion of
analytic methods, which rest on the
class number formulae, and which can
be uced at least tn some ¢asces,

The book ends with a brief deseription
of a package, KANT V2, whuh
implements most of the  algorithms
presented in this book, the packuge wias
developed by a group of rescarchers
bused oripinally at Dusseldort, and s
avatlable  free of (harge on most
electronic actweorhs {(by tiph It appears
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that the package is no longer available
from the Dusseldorf address as mentioned

in the last paragraph of page 84, and 50
this information appears to be out of date.

The subject of constructive (ot
computational) algebraic number theory
is rapidly developing branch of numbcer
theory and this book provides a quick
introduction to this subject. Beginning
with the basic npotions, the author
quickly takes the reader to the most
recent developments in the subject. It is
a suitable text for students who are
famiiar with some basic algebraic
number theory, it contains a large
number of exercises and some very
explicit examples. Researchers in the
field will also find the book stimulating.
In recent years, number theory has
found a number of applications n
coding theory, cryptology and other
branches of computer science and this
book will also be valuable 10 resear-
chers from these fields too.

The author has explained the
fundamental ideas of the subject with
remarkable clarity. The treatment of the
subject, though lucid, 1s lacking in
proofs — however this shouid not be
considered a disadvantage, for the
author gives detailed references to the
proofs of the results which are used n
the book. One thing, which we feel, is
lacking: algorithms are presented in the
last three chapters of the book without
any reference to complexity analysts.
Here the author should have mentioned
if the analysis was not available or
pointed to literature where it is carried
out In a book as quintessentially algori-
thmic as this, the importance of comple-
xity analysis need not be stressed.

We recommend this book as a ‘must’
for all those interested in computational
aspects of alpebraic number theory, and
also for students of algebraic number
theory. In recent years, there has been a
resurgence of computational-experi-
mental techniques in Number Theory.
One need only recall the examples of
Birch~Swinnerton—-Dyer, Zagier conjec-
tures which were discovered compuyta-
ticnally and which have played a
significant role in the development of
the subject. This book 18 a good intro-
duction to the computational aspects of
the subject, written by one of the well-
known experts in the area.
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Boffin: A Personal Story of the Early
Days of Radar, Radio Astronomy and
Quantum Optics. R. Hanbury Brown,
FRS. Adam Hilger, Techno Louse,
Redcliffe Way, Bnstol BS1  6NX,
England. 1991. Pricé: unknown.

It is well recognized that World War I
provided the technical training ground
and much of the impetus for the
expanded conception of astronomy
which emerged in the immediate post-
war period. Many of the radio astro-
nomy pioneers, for instance, worked
during the war on devcloping the air
defence system which we now know as
radar. Many went on to make major
coniributions to these growing new
fields and subsequently became well
known in astronomy circles. Some of
the radar figures, in particular, have
documented their experiences, and this
smal! book joins the others in providing
a detailed, personal account of the
seriousness, excitement and romance of
those years.

Indeed, just over half of Hanbury-
Brown’'s Boffin is devoted to these
formative 7 or 8 war years, and he
writes of them with an almost monkish
sense of vocation. Born in 1ndia of an
Armmy family, perhaps he came to it
naturally. For one whose ‘... greatest
anxiety ... was to be self-supporting
because my step-father had disappeared
in a cloud of debt when 1 was
sixteen _..°, it took a considerable faith
or trust to quit school well short of the
PhDD and take a secret, low-paid job
with the Air Mimstry on the sole
strength of Sir Henry Tizard’s advice.
‘Looking back’, he says, ‘1 am glad I
did; sometimes the morrow does ‘take
thought for things of itself’.

Within a fortnight he found himself in
the places and among the people mosy
closely associated with the British pre-
war effort to cadge together a workable
‘RDF’ system — that is, Radiolocation
and Direction Finding - for immediate
use in the anticipated air war with
Germany. This was 1936 in the pariors
and stables of Bawdsey Manor in
Suffolk and at a disused World War
airficld on the nearby ‘island® of
Orfordness. ‘No on¢ who worked at
Bawdsey in those early days will even
forget the place’, he writes. ‘It was
magical. The Manor was a fairy castle
on a distant shore and had the quality of
a dream ... ‘On the “island™ there
was...a WWI[  aerodrome, ... vast

stretches of windswept shingle and
some wooden huts on whose walls there
were still notices signed by the Siation
Adjutant in 1918. 1t was a desolate,
forbidding place whose only redeeming
features were the birds.’

This early effort under Sir Robert
Watson-Watt was aimed entirely at the
development of what we would now call
ground-based radar (in whose words the
Jatier was ‘a synthetic palindrome
invented by our friends the Americans’}.
Technically, the group worked on
increasing the range of detection and on
refining the means for determining the
direction and height of the aircraft. The
wavelength was decreased first from 50
metres to 26 metres and ultimately to 13
— then a challengingly high frequency —
and transmitter power to the 100 kW
level in 20 microsccond pulses.
Members of the crew became used to
stringing wires at the top of high towers
and to sparing no effort to keep the
cranky equipment working during the
visits of the many air defence YIPs —
including Winston Churchill - who
came to inspect the work. The personal
effect of this experience on Hanbury-
Brown is telling,

Later, when we gol the whole radar
working, we spent most of our time
measuring ifs performance on larget
aircraft. I never got tired of walching
the radar echo from an aircraf! as it
gppeared first as a tiny blip in the noise
on the cathode-ray tube, and then grew
slowly inte a big deflection as the
gircraft came nearer. The strange new
power to 'see’ things at great distances,
through clouds or darkness, was a
magical extension of our senses....

Hanbury-Brown remarks at length
about how technically amateurish and
burcaucracy-bound this whole effort
was, ‘more suited to bird-watching than
to the development of advanced
electronics.” “‘We had ... no proper
workshop and ... few tools [and] also
had very little of the test gear which,
even in those days, one might
reasonably expect to find in a modest
radio laboratory... As for books, the
only one 1 can remember secing is a
copy of the Radio Amateur’s Handbook
which belonged to [a colleague] who
was a devoted ham.” ‘At first I could not
understand why anyone ... coutd allow
this to happen when the work was so
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