Cloning and sequence analysis of DNA gyrase genes from *Mycobacterium tuberculosis*

K. Madhusudan, V. Ramesh and V. Nagaraja*
Centre for Genetic Engineering, Indian Institute of Science, Bangalore 560 012, India

Using a heterologous DNA gyrase probe from *Streptomyces sphaeroides*, we have cloned the gyrA and gyrB genes of *Mycobacterium tuberculosis*. The *M. tuberculosis* gyrB gene has been sequenced and compared with the amino acid sequences of GyrB from other bacteria. There is a significant level (60–80%) of amino acid sequence homology between GyrB of *M. tuberculosis* and that of other bacterial species, indicating a high degree of conservation of this essential enzyme.

DNA gyrase is a type II topoisomerase, present ubiquitously in bacteria. The enzyme has essential function in catalysing the introduction of negative superhelical turns into DNA. The reaction involves ATP-dependent transient breakage and resealing of both strands of DNA. The negative supercoiling thus generated is a prerequisite for replication and transcription. Apart from serving as a swivel during replication fork movement, the enzyme acts on positive supercoils generated ahead of the transcription complex. Along with topoisomerase I, DNA gyrase serves to maintain the homeostatic balance of chromosomal superhelical density.

E. coli DNA gyrase is a tetrameric protein having two A and two B subunits, encoded by gyrA and gyrB respectively. Both the genes of *E. coli* have been cloned, sequenced and overexpressed. The genes have also been isolated and characterized from other bacterial sources. Two classes of compounds, quinolones and coumarins and their derivatives inhibit DNA gyrase activity. The prototype compounds are nalidixic acid, oxolinic acid (quinolones) and coumermycin A1, novobiocin (coumarins). While quinolones interact with DNA-protein complex, coumarins affect the ATPase activity of GyrB, resulting in inhibition of supercoiling mediated by the enzyme.

The genus *Mycobacterium* has attained importance due to pathogenic species such as *Mycobacterium tuberculosis*, *Mycobacterium leprae* and other opportunistic members. Tuberculosis and leprosy have continued to be serious public health hazards in India and other developing countries over a long period of time. Only recently, the industrialized countries have shown enormous interest in this problem due to the increased incidence of tuberculosis and development of resistance to known antitubercular drugs. Though DNA gyrase has been well studied in several organisms, hardly any information is available from Mycobacteria. The enzyme could be an ideal target for the development of new line of antitubercular drugs. Although DNA gyrase activity was detected in *M. smegmatis* earlier, details about the enzyme structure and function from the Mycobacterial species are yet to be elucidated. Cloning and expression of the gyrase genes should facilitate the isolation of the protein in large quantities to carry out in vitro drug screening experiments. Here we report the cloning of gyrA and gyrB genes from *M. tuberculosis*. Further, we have determined the nucleotide sequence of gyrB and compared with other known gyrB sequences.

Materials and methods

Bacterial strains *M. tuberculosis* H37Rv, *E. coli* DH5α, and plasmid vectors pUC19, pBR322, were from our laboratory stocks. *M. tuberculosis* H37Rv was propagated on Youmans and Karlson's medium as described earlier. All *E. coli* strains were grown on Luria–Bertani medium. The following plasmids and strains were generous gifts: pSL6447, *E. coli* gyrA (J. C. Wang, Harvard Univ., Cambridge, USA); pMK90, pMK47, *E. coli* gyrA and gyrB and *E. coli* N4177 gyrB cod (M. Gellert, NIH, USA); E. coli LE316 gyrB (E. Orr, Leicester Univ., UK); *E. coli* NH647, KNK453, KNK402 are gyrB strains (N. R. Cozzarelli, Univ. of Chicago, Chicago, USA); pGFD80, K. pneumoniae gyrA (H. K. Das, Jawaharlal Nehru Univ., New Delhi, India); pA1, B. subtilis gyrA and gyrB (K. F. Bott, Univ. of North Carolina, Chapel Hill, USA); pLS182, S. sphaeroides gyrB (A. S. Thiara and E. Cundliffe, Leicester Univ., UK).

Restriction and DNA modifying enzymes were from Pharmacia and Boehringer Mannheim and used according to their specifications. Nylon membrane (Gene screen plus) was from New England Nuclear, Du Pont. [α-32P]dCTP was obtained from Bhabha Atomic Research Centre, India. 7-deaza dGTP was from Boehringer Mannheim and Sequenase version 2.0 and Genescrbe vectors pTZ18U, pTZ19U were from U.S. Biochemicals. All other...
Isolation of genomic DNA and other DNA manipulations

Genomic DNA from M. tuberculosis H_{37}R_{v} was isolated by the method of Srivastava et al.13. Briefly, the bacterial pellet was treated with lysozyme in TGE (Glucose 50 mM; Tris HCl pH 8.0, 25 mM; EDTA 10 mM) containing 0.1% Tween 80 at 37°C for 3 to 4 h and incubated with proteinase K (100 µg/ml) at 60°C for 2 h in presence of 1% SDS. After phenol and chloroform extractions the genomic DNA was precipitated with ethanol, spooled and dissolved in TE (Tris HCl pH 8.0, 10 mM; EDTA 0.1 mM). RNase A digestion was followed by cetly triethyl ammonium bromide treatment24 and phenol, chloroform extractions. DNA was spooled out after adding ethanol, air dried and dissolved in TE.

Southern analysis of genomic DNA

Genomic DNA (2 µg) was digested completely with several restriction enzymes, such as BamHI, EcoRI and Bg/II. The digested DNA was electrophoresed in 0.8% agarose (4–5 V/cm) and transferred on to nylon membrane in presence of alkali. This blot was prehybridized for 4–6 h and then hybridized with radiolabelled 2.2 kb BamHI fragment carrying S. sphaeroides gyrB gene for 12–24 h. The experimental details were as described in Sambrook et al.35.

Isolation of positive clone by colony hybridization

The DNA was electroeluted from the region of the signal and ligated to EcoRI digested, dephosphorylated pBR322. The transformants in E. coli DH5α were transferred on to nitrocellulose circles and hybridization was performed as described above. The colonies were screened and the positive clones were isolated and reanalysed by Southern hybridization35.

DNA sequence determination

Different restriction enzyme fragments were subcloned into Genescribe vectors (pTZ18U and pTZ19U) to prepare ssDNA templates. Sequencing reactions were carried out following supplier’s manual and the products were resolved on 6% Urea PAGE. The DNA sequence was analysed using UWCG software, at the Distributed Information Centre, Indian Institute of Science. The sequence information has been communicated to EMBL Data Library.

Results and discussion

We have used different strategies to clone the DNA gyrase genes from M. tuberculosis. The genomic libraries of M. tuberculosis were prepared in pUC19 and pBR322 using different restriction enzymes. The libraries were transformed into temperature-sensitive gyrA and gyrB strains of E. coli4,7,8 B. subtilis23 and K. pneumoniae20 also did not give hybridization signals in spite of several attempts using different conditions. The failure of these heterologous probing experiments could be due to the vast difference in the G+C content of the probes (= 50%) to that of Mycobacteria (= 70%). Hence, we used the cloned gyrB3 gene (a generous gift of A. S. Thiara and E. Cundiff) of S. sphaeroides, a G+C rich organism closely related to Mycobacteria.

Southern hybridization of chromosomal DNA isolated from M. tuberculosis H_{37}R_{v} with S. sphaeroides gyrB gene probe is shown in Figure 1. Single hybridizing fragment of different sizes was seen in each lane except...

![Figure 1. Southern analysis of M. tuberculosis H_{37}R_{v} DNA. The details of the experiment are given in Methods. DNA was digested with BamHII (lane 1), PsI (lane 2), EcoRI (lane 3) and BgIII (lane 4). Sizes of the Lambda DNA-HindIII fragments are indicated.](image-url)
in EcoRI lane where two fragments 6.2 kb and 4.2 kb hybridized to the probe. DNA from EcoRI lane in the region corresponding to 6.2 kb and 4.2 kb was eluted and cloned into plasmid pBR322. Bacterial colonies harbouring these recombinant plasmids containing gyrB' hybridizable fragments were then picked up by colony hybridization with the same probe. Several recombinant plasmids were isolated and screened again by Southern hybridization to obtain pMN13R and pMN6R of sizes 6.2 kb and 4.2 kb respectively. The contiguous arrangement of these 6.2 kb and 4.2 kb fragments in the genome was confirmed by subsequent Southern analysis of genomic DNA using several restriction enzymes. The plasmids were digested with several restriction enzymes to obtain the restriction map. The combined restriction map of pMN13R and pMN6R is given in Figure 2. Enzymes such as BamHI, SmaI, SacII, PvuII have multiple sites. This information was used to generate smaller subclones for sequencing. The gyrB gene was located by hybridizing the DNA from different subclones with the probe. The location of gyrA was identified by partial sequencing of plasmid pMN6R. We have determined the complete nucleotide sequence of gyrB gene by sequencing about 5.0 kb region of the cloned region. The sequencing strategy will be described in detail elsewhere. Sequence data obtained from double-stranded DNA sequencing were ambiguous. We therefore resorted to make single-stranded templates and use 7-deazagTP to relieve GC compressions. This modification provided unambiguous sequence data. Analysis of the sequence revealed the presence of an ORF of 714 amino acids (Figure 3). Examination of the derived amino acid sequence indicates the presence of several potential start codons and the exact N-terminus of the protein is not determined at this stage. Comparison of this derived amino acid sequence to known DNA Gyrb subunit amino acid sequences using GAP (GCG software) showed a high degree of homology. At the amino acid level, the sequence shows about 55% identity and greater than 70% homology to E. coli Gyrb subunit. DNA sequence comparison indicated poor homology between the gyrB genes of E. coli and M. tuberculosis. This result is not surprising considering the difference in the G+C content of these two unrelated species. However, the gene shows about 80% homology at the amino acid level and greater than 70% DNA sequence homology to S. sphaeroides gyrB gene.

Next, we aligned one of the most conserved regions amongst the known Gyrb proteins. This region includes Lys-103 and Tyr-109 residues of E. coli Gyrb which contribute to the ATP-binding pocket. The conservation to near identity of this 27 amino acid stretch reflects the importance of this region in the structure and function of the protein across diverse bacterial genera (Figure 4). It should be noted here that crystal structure studies of the N-terminal fragment of E. coli DNA Gyrb protein,
complexed with ATP analogue, ADPNP have revealed important features of cofactor–protein interactions. Apart from Lys-103 and Tyr-109, Tyr-5, Asn-46, Asp-73, Gln-335 and Lys-337 are shown to be involved in interacting with the cofactor. These amino acids are also found to be conserved in gyrB gene of M. tuberculosis.

While there are structural and possible functional similarities between E. coli and M. tuberculosis GyrB proteins, the following differences may be noted:

(1) An unusually long N-terminal stretch of 46 amino acids (considering the first ATG of the ORF) when compared to GyrB of E. coli; the significance, if any, of this region is yet to be ascertained.

(2) Absence of a stretch of about 165 amino acids towards the C-terminal region of M. tuberculosis GyrB which is present in E. coli. This might explain the failure of our earlier functional complementation experiments using temperature-sensitive E. coli gyrA and gyrB strains. It should be mentioned here that B. subtilis gyrB which lacks this stretch also fails to functionally complement its homologue of E. coli.16,17,21. This result is in general agreement with our observation. We have noted that the same stretch of amino acids is absent in GyrB of M. pneumoniae29, and S. pneumoniae30.

The DNA gyrase of Mycobacteria could be a very effective target for new antituberculars, either derivatives of known inhibitors of DNA gyrase or novel ones. There is an urgent need for new drugs for the treatment of tuberculosis due to the resurgence of the disease18 and alarming increase in resistance15 to proven antituberculars such as Rifampicin and INH. The cloning and sequencing of the gyrase genes is a first step in this direction. Expression and characterization of the protein should enable us to screen a variety of quinolone and coumarin compounds.

Note added in proof: Takiff et al.31 have recently cloned and sequenced gyrA and gyrB genes from M. tuberculosis H37 Rv.

ACKNOWLEDGEMENTS. We thank N. R. Cozzarelli, M. Gellert and J. C. Wang for temperature sensitive E. coli gyrA and gyrB strains and DNA probes; K. F. Bott for B. subtilis gyrase clones; H. K. Das for K. pneumoniae gyrA plasmid; A. S. Thiru and E. Cundliffe for gyrB of S. pneumoniae. Thanks are due to H. Sharan Chandra for his interest and critical reading of the manuscript. The work is supported by a grant from Council for Scientific and Industrial Research (CSIR), India. MK and VR are senior research fellows of CSIR.

Received 7 April 1994; accepted 12 April 1994