SPECIAL SECTION

A submersion principle and its applications
By

HARISH-CHANDRA

1. Introduction

Let G be a real reductive group and = an irreducible admissible representation of
G. Let © denote the character of z. We recall that © is 2 distribution on
( defined by

O()=trz(f) (fe C=(Q).

It is well known that @ is a locally summable function on G which is analytic on

the set G’ of regular elements. Fix y,€ G’ and let I be the Cartan subgroup of
G containing 7,. Put

I'=G Nrand Gp= U xI"x1

el

The mapping (x, ) |—= xyx* of G X I’ inte G is everywhere submersive.
Since © 1s invariant under all inner automorphisms of G, one proves easily
that © defines a distribution ¢ on 7. Let @ be the algebra of all differential
operators on G which commute with both lefi and right translations. Then ©
safisfies the differential equations

0= ()0 (z2eQ),

where x is the infinitesimal character of z. We can transcribe these equations in
terms of §. In this way we obtain a system of differential equations for ¢ on J™.
It turns out that this system is elliptic and therefore # is an analytic function on I
But this implies that @ coincides with an analytic function on Gp.

We would like to prove a similar result in the p-adic case. Let £ be a p-adic
field and G the group of all Q-rational points of a connected reductive Q-group G
[3]. Then G, with its usual topology, is a locally compact, totally disconnected,
unimodular group. Let dx denote its Haar measure. We shall use the termino-
logy of [3] without further comment.

Let » be an admissible irreducible representation of G. Then for every
fe C* (G), the operator

7 (f) == éff(x):'r(x)dx
95
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has finite rank. Put
Q(f) =tr=x ().

Then @ is a distribution on G.  Let G’ be the set of all points x € G where D (x) #
0 ({31, §15). Then G’ is an open, dense subset of G whose complement has measure
zero. We ntend to show that ® coincides with a locally constant function Fon
¢'. This means that

O (f) = [ f(x) F(x)dx,
lor all fe C® (GY).

In case char £ == 0, this fact was first proved by Howe by making use of his
Kirillov theory for p-adic groups. Moreover when char 2 — 0, it is known that
© is a locally summable function on G [4, 5]. But these methods, which make
extensive use of Lie algebras and the exponential mapping, do not seem to work
in characteristic p. We shall therefore construct a proof on a totally different
principle.

2. The submersion principle

Let P be a parabolic subgroup of G and x|-» x* the projection of G on G* = G/P.

Theorem | (the submersion principle). Fix yeG’. Then the mapping
x | (epx=1)*

from G to G* is everywhere submersive.

When char € = 0, the proof is very easy. Moreover Borel assures me that this
principle is actually true over an arbitrary field.

let us verify it when char 2 =0. Put
Py x| (xpx7)*.

Then ¢y (xp) =P (x)  (x,y€G)
Hence it is enough to prove that ¢ is submersive at x = 1.
Fix a split component 4 of P and let P = MN be the corresponding Levi

decomposition of P. Let (P, A) denote the p-pair opposite to (P, 4). Then

P MN. We denote the Lie algebras of G, P, M, N, N by Q. p,n, N, n Tespecs
tively. Then

ﬂ3m+ﬂ, ;I:?l'lrm-:'-m
and we have to verify that

(Ad(yH—Deg+p=1

|
l Fix a symmetric, nondegenerate, G-invariant bilinear form B on g with values

in 2. Since G is reductive, this 1s possible. Let [ be the Cartan subgroup of G
determined by y and ¢ the Lie algebra of I". Then ¢ == ker (Ad () — 1). For

el
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any linear subspace g of g, let gt denote the space of all Yeg such that
B(X,Y)=0for all Xegqg Then

pt =, ((Ad(y") — g}t =ker (Ad(?) ~1) =1

Therefore ((Ad () — 1)g + p)L c ¢ N u= {0},
and this implies the desired result. |

3. The funciion §,, ,
Fix y and P as in theorem 1. Then the mapping*
(x,p)r—=*y-p (xeG,peP) [

of G x Pinto G 1s everywhere submersive. Hence ([2], p. 49) there exists a unique r
linear mapping

| ci= fay  (2€C® (G X P)) i

from C® (G x P) to C® (G) such that

{ a.(.x:p)F(’y.p)a’xd,p=C!fu,7(x)F(x)d’x,

GxP

for.all Fe C® (G). Here d,p 1s the left Haar measure on P.

Lemma 1. Fix ac C® (G X P). Then the mapping
Yi=fay el)
from G' to C® (G) is locally constant.
The mapping

()’: xip)l"" (y: :_,V ' P)

from G’ X G X P to G' X G is submersive. Hence there exists a unique linear
mapping

Piordy (feCF(G" X G X P))
from CX(G" x G X P) to C® (G’ x G) such that

J B :x:p)®(y:ty - p)dydxdip = [ g (v 1) @ () 1 x) dvdx
for all e C® (G’ x G). Now let
O (v :x) =27 (y) F(x),
where e C® (G') and Fe C® (G). Then
GJ'A WNdy | B:ix:p)F (y. pydxdip = &l'ﬂ. () dy{,}fgﬁﬂ (y 1 x) F(x)dx.

GXP

* We write *y = xyx~! for x, y € G.

P17
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This being true for all 4, we conclude that

| B :x:p)F(y-pydedip = [dg(y : x) F (x) dx

GX P

for all y€ G’ and Fe C® (G).
Now fix yoe ¢’ and put
By ix:p)y=p(@)ao(x:p)

where e e CR® (G X P), neC® (G') and u(y,) = I. Let G, be a neighbourhood

of yoin G' such that g =1 on G,. Then F(y :x :p)=a(x:p) for ye G, and
therefore

f B :x:p) F(Cy -pldxdip= § a(x:p)F(Cy . p)dxdp

G xP

= [ fo, s (x) F (x) dx.
Hence §fa,,(3) F()dx= Jdgly :x) F(x)dx
for ye G, and Fe C® (G). This shows that

fﬁ.r(x)"_"‘ibﬁty :x) (ve Gy x€G).

Since Ppge C® (G' X G), our assertion is now obvious.

4. The operator T,

Fix a minimal p-pair (P, 4) in G (P = MN) and let X be an open compact sub-
group of G of Bruhat-Tits ({2], p. 16) corresponding to 4. Let 7 be an admissible
representation of G on V. We recall that End¢¥V is defined to be the subspace of
all TeEand ¥ such that the mappings

x1—=» 2 {x) T, x1— Tr(x),

of G into End ¥V are both smooth.

Let dk denote the normalised Haar measure on X.

Theorem 2. Let m be an admissible representation of G on V such that V is a finite
G-module under n. For x € G’, define

T, = [ r(kxk™1)dk.
K

Then T,cEnd *V and x1— T, is a smooth mapping from G' to End V.

Let KX, be an open and normal subgroup of X and V, the subspa.ce_ of all
vectors in ¥, which are left fixed by K,. Then dim V,y < oo. By choosing K,
sufficiently small, we may assume that V is spanned by e¢lements of the form

z(x)v (x€G,veV,)
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Let M+ denote the set of all m e M such that {a, Hy (n)) > 0 for every root o
of (P, A) (see [3], § 7) for the definition of H,). Then G = KM+ - K. Put 4+ =
AN M*. Since M/A is compact, we conclude that M+ ¢ CA* where C is a com-
pact subset of M. Hence 1t 1s clear that we can choose an open compact sub-
group P, of P such that m=1Pym C K, for all me M+,

Let a denote the characteristic function of K x P, and put f, = fa,y (Y €G')

in the notation of lemma 1. Then y - f, is a smooth mapping from G’ to C® (G)
l and

J E(y - p)dkdp = 1/ (x) F (%) dx,

KX P,

for all locally summable functions F on G. (Here dp is the normalised Haar
measure on P,.) From this we deduce immediately that

[ n(*y - p)dkdp = I, n ) dx=x(,).

KXP,

Let ¥, be the smallest K-invariant subspace of V containing z(f,) V. Since
fye €2 (G), it is clear that dim ¥, < oo, I

Since K, is normal in K, V, is stable under n (K). Therefore since G = KM+K,
V is spanned by n (KM*)V,. Fix keK, me M+ and ve V,. Then

T a(km)yv=n(&)T,n(mv (y e G').

But n(fyr(mMo=T, [ r(pm)vdp = T, n{m) § n (m pm) vdp = Ir(mo

P FPq

since m— Pyn C K,. Therefore
T,a(km)yv = ()n(fyn(mveV,.

This shows that T, V' C V,. Since T,commutes with = (k) (k€ k), dim V, < oo
and 7 is admussible, it 15 now clear that 7, e Ende/V.

Fix k,m,v as above. Since the mapping y'— f, is smooth, it follows from
the result obtained above that the mapping

yi—= T,z hm)v =a{k)n{(f,) n(m)v(yeCG),

from G’ to Vis also smooth. The second statement of the theorem is now ¢bvious
if we recall that V is spanned by = {(KM) V,.

Corollary. Let @ denote the character of n. Then O coincides on G’ with the
locally constant function

x'—>tr T, (xe ().

Put /o (x)= [ flkxk™")dk (x e (),
P

for fe C® (G). Then

O() =0 (%) =tal/) '
} e ———————————— T ————_ R
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But n{fey= J f(x)T,dx
G

for fe C= (G'). Hence

(= Jfx)tr T, dx (feC®(GY).
&

5. Some applications

Let I” be a Cartan subgroup of G. For yel” "= I N G and fe C® (), define

F,(=1D0) I} GL fxyx—1) dx*
r

where D = D, Ap is the split component of I and 4x* 1s an invariant measure
on Gl/Ap.

Theorem 3. Let K, be an open compact subgroup of G. Given y,eI’, we can
choose a neighbourhood w of yy in I such that F, is constant on o for every

fe C, (G/K,).

This result had been proved by Howe some years ago in the case char 2 = 0.
Without Joss of generality, we may assume that K, 1s & normal subgroup of X.
Let us now use the notation of §4. Then i

[ F (* . p)dkdp = GI Jv (x) F (x} dx,

KxPy

for yeI" and Fe C® (G). Fix fe C.(G/K,) and put

g(x)= [ flkxk ) dk (x e G).
K

Since K, 1s normal in X, g€ C.(G//K,). Fix me M+ and let F(x) = g (m™! xm)
(x€ G). Then

[ g . *y.pm)dkdp = [ f (x) g (m™! xm) dx.

KXP,

|  But pm =mm*pmemK, Hence

,, fg(mt ¥y .m)dk = [ fy(x)g (mt xm) dx (ye ).

i H

Fix a neighbourhood Iy of y, in I such that Sy = Lo, for ye I,. This is
possible by lemma 1, Then

H_!' g(mq."y.m)dkzgg(m‘l. “vo - m) dk (ye F,).

By standard arguments, the proof of theorem 3 is reduced to the case when I
is elliptic. Then Ap = Z where Z is the maximal split torus lying in the centre
of G. We know from the work of Bruhat and Tits that

K\\G/KZ = M+°*MZ.

e —— - " _* =
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Therefore F(7) = [ D(y) 12 [ fepx ) du*
GIZ

= |DOYE X ulm) [ g *y . m)dk,

meMYioMZ r. 4

where u (m) is the Haar measure of KmK. Let w be a neighbourhood of y, in 17,
such that | D(y) |, is constant for yew. Then

Fy(y) = F,(y0) (yew).

Since ui Is independent o.” fe C,(G/K,), the theorem 1s proved.

Theorem 3 makes it possible to prove Lemma 13 of ([3], § 16) without any restric-
tion on char Q.

I believe it 1s important, from the point of view of harmonic analysis, to obtain

an analogue of theorem 35 of ([1], p. 32). We give below a result which may be
regarded as a step in this direction.

Take K, = K and define fy(ye7”’) as in §4. Then f, > 0. Put
B(y)=sup fy(x) (rel’)

and define Z as in ([3], §14).

Theoren: 4, Lef o be a compact subset of ' Then we can choose a positive
number ¢ such that

{ 20w, % . mydk < cf (3) = (m)%,
K

for all me MY and yew =wun I'.

[t (s obvious that

Supp fy C U ¥y . P (yel”).

kEK

Theretore Supp fy C &0 . Po—= C  (say)

for yew’. Since C is compact, we can choose a finite number of elements
v (I <i<r)in G such that

Suppfy C U K

1§
for all yew'.
Now fix yew', me M*' and pul
F(x)= Z (1 xm) (x e G)

in the relation

[ F &y pydkdp = [ [ (x) F(x) dx.
&

HXP,

Observe that

Fy.py-=Zm ' %y pm)y=Z(m. %y . m) (peP)

L
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since m~! pme K. Therefore

J 2 5y .oydk < (3} | = (m 2y, km) dh
KX

i K

=B Y E(my) E(m)

from the identity
[ 2xkpydk = Z(x)20) (x,yeG).

K

We can choose a number ¢; = 1 such that

SN < B (<i<r) |

for all xe{. Put ¢ = re, and observe that Z{(x)= Z(x). Then we get

J 2t %y om) < cf(y) E(m)®

# |
and this proves our assertion.

One would like to verify that |

sup | D(p) |} B (y) < oo. l
yEw”

I believe this to be true but do not have a proof. |
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