A submersion principle and its applications

By

HARISH-CHANDRA

1. Introduction

Let G be a real reductive group and π an irreducible admissible representation of G. Let Θ denote the character of π . We recall that Θ is a distribution on G defined by

$$\Theta(f) = \operatorname{tr} \pi(f) \quad (f \in C_{\mathfrak{a}}^{\infty}(G)).$$

It is well known that Θ is a locally summable function on G which is analytic on the set G' of regular elements. Fix $\gamma_0 \in G'$ and let Γ be the Cartan subgroup of G containing γ_0 . Put

$$\Gamma' = G' \cap \Gamma$$
 and $G_{\Gamma} = \bigcup_{e \in G} x \Gamma' x^{-1}$.

The mapping $(x, y) \mapsto xyx^{-1}$ of $G \times \Gamma'$ into G is everywhere submersive. Since Θ is invariant under all inner automorphisms of G, one proves easily that Θ defines a distribution θ on Γ' . Let $\mathcal G$ be the algebra of all differential operators on G which commute with both left and right translations. Then Θ satisfies the differential equations

$$z\Theta = \chi(z)\Theta \quad (z \in \mathcal{G}),$$

where χ is the infinitesimal character of π . We can transcribe these equations in terms of θ . In this way we obtain a system of differential equations for θ on Γ' . It turns out that this system is elliptic and therefore θ is an analytic function on Γ' . But this implies that Θ coincides with an analytic function on G_{Γ} .

We would like to prove a similar result in the p-adic case. Let Ω be a p-adic field and G the group of all Ω -rational points of a connected reductive Ω -group G [3]. Then G, with its usual topology, is a locally compact, totally disconnected, unimodular group. Let dx denote its Haar measure. We shall use the terminology of [3] without further comment.

Let n be an admissible irreducible representation of G. Then for every $f \in C^{\infty}(G)$, the operator

$$\pi(f) = \int_G f(x) \pi(x) dx$$

95

Harish-Chandra

has finite rank. Put

$$\Theta\left(f\right)=\operatorname{tr}\pi\left(f\right).$$

Then Θ is a distribution on G. Let G' be the set of all points $x \in G$ where $D_G(x) \neq O([3], \S 15)$. Then G' is an open, dense subset of G whose complement has measure zero. We intend to show that Θ coincides with a locally constant function F on G'. This means that

$$\Theta(f) = \int f(x) F(x) dx$$

for all $f \in C_{\bullet}^{\infty}(G')$.

In case char $\Omega = 0$, this fact was first proved by Howe by making use of his Kirillov theory for p-adic groups. Moreover when char $\Omega = 0$, it is known that Θ is a locally summable function on G[4, 5]. But these methods, which make extensive use of Lie algebras and the exponential mapping, do not seem to work in characteristic p. We shall therefore construct a proof on a totally different principle.

2. The submersion principle

Let P be a parabolic subgroup of G and $x \mapsto x^*$ the projection of G on $G^* = G/P$.

Theorem 1 (the submersion principle). Fix $y \in G'$. Then the mapping

$$x \mapsto (x\gamma x^{-1})^*$$

from G to G^* is everywhere submersive.

When char $\Omega = 0$, the proof is very easy. Moreover Borel assures me that this principle is actually true over an arbitrary field.

Let us verify it when char $\Omega = 0$. Put

$$\phi_{\gamma}: x \rightarrow (x\gamma x^{-1})^*$$
.

Then
$$\phi_{\gamma}(xy) = \phi_{\nu\gamma\nu^{-1}}(x)$$
 $(x, y \in G)$.

Hence it is enough to prove that ϕ_{γ} is submersive at x=1.

Fix a split component A of P and let P = MN be the corresponding Levi decomposition of P. Let (\bar{P}, A) denote the p-pair opposite to (P, A). Then $\bar{P} = M\bar{N}$. We denote the Lie algebras of G, P, M, N, \bar{N} by g, p, m, n, \bar{n} respectively. Then

$$p = m + n$$
, $q = n + m + n$,

and we have to verify that

$$(\mathrm{Ad}\,(\gamma^{-1})-1)\,\mathfrak{g}+\mathfrak{p}=\mathfrak{g}.$$

Fix a symmetric, nondegenerate, G-invariant bilinear form B on $\mathfrak g$ with values in Ω . Since G is reductive, this is possible. Let Γ be the Cartan subgroup of G determined by γ and $\mathfrak c$ the Lie algebra of Γ . Then $\mathfrak c = \ker (\operatorname{Ad}(\gamma) - 1)$. For

A submersion principle and its applications

97

any linear subspace q of g, let q^{\perp} denote the space of all $Y \in g$ such that B(X, Y) = 0 for all $X \in q$. Then

$$\mathfrak{p}^{\perp} = \mathfrak{n}, \ ((\mathrm{Ad}(\gamma^{-1}) - 1)\mathfrak{g})^{\perp} = \ker \ (\mathrm{Ad}(\gamma) - 1) = \mathfrak{c}.$$

Therefore $((Ad(y^{-1})-1)g+p)^{\perp} \subset \mathfrak{c} \cap \mathfrak{n} = \{0\},$

and this implies the desired result.

3. The function fan y

Fix γ and P as in theorem 1. Then the mapping*

$$(x,p) \mapsto {}^{*}\gamma \cdot p \qquad (x \in G, p \in P)$$

of $G \times P$ into G is everywhere submersive. Hence ([2], p. 49) there exists a unique linear mapping

$$\alpha \mapsto f_{\alpha, \gamma} \qquad (\alpha \in C_{\alpha}^{\infty} (G \times P))$$

from $C_c^{\infty}(G \times P)$ to $C_c^{\infty}(G)$ such that

$$\int_{G \times P} \alpha(x : p) F(^{x}\gamma \cdot p) dx d_{t}p = \int_{G} f_{\alpha, \gamma}(x) F(x) dx,$$

for all $F \in C_{\sigma}^{\infty}(G)$. Here $d_{I}p$ is the left Haar measure on P.

Lemma 1. Fix $a \in C^{\infty}(G \times P)$. Then the mapping

$$y \mapsto f_{a_1 y} \quad (y \in G')$$

from G' to $C_{\sigma}^{\infty}(G)$ is locally constant.

The mapping

$$(y, x, p) \mapsto (y, {}^{x}y \cdot p)$$

from $G' \times G \times P$ to $G' \times G$ is submersive. Hence there exists a unique linear mapping

$$\beta \mapsto \phi_{\beta} \qquad (\beta \in C_{\epsilon}^{\infty} (G' \times G \times P))$$

from $C_{\bullet}^{\infty}(G' \times G \times P)$ to $C_{\bullet}^{\infty}(G' \times G)$ such that

$$\int \beta(y:x:p) \Phi(y:^{a}y \cdot p) dy dx d_{1}p = \int \phi_{\beta}(y:x) \Phi(y:x) dy dx$$

for all $\Phi \in C^{\infty}(G' \times G)$. Now let

$$\Phi(y:x)=\lambda(y)F(x),$$

where $\lambda \in C_{\mathfrak{o}}^{\infty}(G')$ and $F \in C_{\mathfrak{o}}^{\infty}(G)$. Then

$$\int_G \lambda(y) \, dy \int_{G \times P} \beta(y:x:p) \, F(^*y\cdot p) \, dx d_1 p = \int_G \lambda(y) \, dy \int_G \phi_\beta(y:x) \, F(x) \, dx.$$

P-7

^{*} We write $y = xyx^{-1}$ for $x, y \in G$.

Harish-Chandra

This being true for all 1, we conclude that

$$\int_{G \times P} \beta(y : x : p) F(^{\bullet}y \cdot p) dx d_{1}p = \int_{\beta} \phi_{\beta}(y : x) F(x) dx$$

for all $y \in G'$ and $F \in C_{4}^{\infty}(G)$.

Now fix $y_0 \in G'$ and put

$$\beta(y:x:p) = \mu(y) \alpha(x:p)$$

where $a \in C_c^{\infty}(G \times P)$, $\mu \in C_c^{\infty}(G')$ and $\mu(y_0) = 1$. Let G_0 be a neighbourhood of y_0 in G' such that $\mu = 1$ on G_0 . Then $\beta(y:x:p) = \alpha(x:p)$ for $y \in G_0$ and therefore

$$\int_{G \times P} \beta(y : x : p) F(^{\theta}y \cdot p) dx d_{1}p = \int_{G} \alpha(x : p) F(^{\theta}y \cdot p) dx d_{1}p$$
$$= \int_{G} f_{\alpha, \pi}(x) F(x) dx.$$

Hence $\int f_{\alpha, y}(x) F(x) dx = \int \phi_{\beta}(y:x) F(x) dx$

for $y \in G_0$ and $F \in C_{\alpha}^{\infty}(G)$. This shows that

$$f_{\alpha, \gamma}(x) = \phi_{\beta}(y : x) \quad (y \in G_0, x \in G).$$

Since $\phi_{\beta} \in C_{\bullet}^{\infty}$ $(G' \times G)$, our assertion is now obvious.

4. The operator T.

Fix a minimal p-pair (P, A) in G(P = MN) and let K be an open compact subgroup of G of Bruhat-Tits ([2], p. 16) corresponding to A. Let π be an admissible representation of G on V. We recall that $\operatorname{End}^{0}V$ is defined to be the subspace of all $T \in \operatorname{End} V$ such that the mappings

$$x \mapsto \pi(x) T, x \mapsto T\pi(x),$$

of G into End V are both smooth.

Let dk denote the normalised Haar measure on K.

Theorem 2. Let π be an admissible representation of G on V such that V is a finite G-module under π . For $x \in G'$, define

$$T_{\bullet} = \int_{K} \pi (kxk^{-1}) dk.$$

Then $T_{\bullet} \in \text{End} \circ V$ and $x \mapsto T_{\bullet}$ is a smooth mapping from G' to End $\circ V$.

Let K_0 be an open and normal subgroup of K and V_0 the subspace of all vectors in V, which are left fixed by K_0 . Then dim $V_0 < \infty$. By choosing K_0 sufficiently small, we may assume that V is spanned by elements of the form $\pi(x) v (x \in G, v \in V_0)$.

Let M^+ denote the set of all $m \in M$ such that $\langle a, H_M(m) \rangle \ge 0$ for every root α of (P,A) (see [3], § 7) for the definition of H_M). Then $G = KM^+ \cdot K$. Put $A^+ = A \cap M^+$. Since M/A is compact, we conclude that $M^+ \subset CA^+$ where C is a compact subset of M. Hence it is clear that we can choose an open compact subgroup P_0 of P such that $m^{-1}P_0 m \subset K_0$ for all $m \in M^+$.

Let a denote the characteristic function of $K \times P_0$ and put $f_y = f_{a,y}$ $(y \in G')$ in the notation of lemma 1. Then $y \to f_y$ is a smooth mapping from G' to $C_s^{\infty}(G)$ and

$$\int_{\mathbb{R}\times P_0} F(^k y \cdot p) \, dk dp = \int_G f_{\mu}(x) \, F(x) \, dx,$$

for all locally summable functions F on G. (Here dp is the normalised Haar measure on P_0 .) From this we deduce immediately that

$$\int_{K\times P_b} \pi(^k y \cdot p) \, dk dp = \int_G f_y(x) \pi(x) \, dx = \pi(f_y).$$

Let V_y be the smallest K-invariant subspace of V containing $\pi(f_y) V$. Since $f_y \in C_c^{\infty}(G)$, it is clear that dim $V_y < \infty$.

Since K_0 is normal in K, V_0 is stable under $\pi(K)$. Therefore since G = KM + K, V is spanned by $\pi(KM^+) V_0$. Fix $k \in K$, $m \in M^+$ and $v \in V_0$. Then

$$T_{\mathbf{v}}\pi\left(km\right)\mathbf{v}=\pi\left(k\right)T_{\mathbf{v}}\pi\left(m\right)\mathbf{v}\qquad\left(y\in G'\right).$$

But
$$\pi(f_y)\pi(m)v = T_y \int_P \pi(pm)vdp = T_y\pi(m) \int_{P_a} \pi(m^{-1}pm)vdp = T_y\pi(m)v$$

since $m^{-1} P_0 m \subset K_0$. Therefore

$$T_u \pi(km) v = \pi(k) \pi(f_u) \pi(m) v \in V_u$$

This shows that $T_y V \subset V_y$. Since T_y commutes with $\pi(k)$ $(k \in k)$, dim $V_y < \infty$ and π is admissible, it is now clear that $T_y \in \text{End}^{\circ}V$.

Fix k, m, v as above. Since the mapping $y \mapsto f_y$ is smooth, it follows from the result obtained above that the mapping

$$y \mapsto T_y \pi(km) v = \pi(k) \pi(f_y) \pi(m) v (y \in G'),$$

from G' to V is also smooth. The second statement of the theorem is now obvious if we recall that V is spanned by $\pi(KM^+)V_0$.

Corollary. Let Θ denote the character of π . Then Θ coincides on G' with the locally constant function

$$x^{\perp} \to \operatorname{tr} T_{\bullet} \quad (x \in G').$$

Put
$$f^{\theta}(x) = \int_{\mathbf{z}} f(kxk^{-1}) dk$$
 $(x \in G),$

for $f \in C^{\infty}(G)$. Then

$$\Theta(f) = \Theta(f^0) = \operatorname{tr} \pi(f^0).$$

Harish-Chandra

But
$$\pi(f^0) = \int_G f(x) T_x dx$$

for $f \in C_{\epsilon}^{\infty}(G')$. Hence

$$\Theta(f) = \int_{G} f(x) \operatorname{tr} T_{\bullet} dx \qquad (f \in C_{\bullet}^{\infty}(G')).$$

5. Some applications

Let Γ be a Cartan subgroup of G. For $\gamma \in \Gamma' = \Gamma \cap G'$ and $f \in C_a^{\infty}(G)$, define

$$F_f(\gamma) = |D(\gamma)|_{\mathfrak{p}}^{\frac{1}{2}} \int_{GA} f(xyx^{-1}) dx^*$$

where $D = D_G$, A_{Γ} is the split component of Γ and dx^* is an invariant measure on G/A_{Γ} .

Theorem 3. Let K_0 be an open compact subgroup of G. Given $\gamma_0 \in \Gamma'$, we can choose a neighbourhood ω of γ_0 in Γ' such that F_1 is constant on ω for every $f \in C_0$ (G/K_0) .

This result had been proved by Howe some years ago in the case char $\Omega = 0$. Without loss of generality, we may assume that K_0 is a normal subgroup of K. Let us now use the notation of § 4. Then

$$\int_{\mathbb{K}\times P_a} F(^k y \cdot p) \, dk dp = \int_G f_{\gamma}(x) \, F(x) \, dx,$$

for $\gamma \in \Gamma'$ and $F \in C_c^{\infty}(G)$. Fix $f \in C_c(G/K_0)$ and put

$$g(x) = \int_{K} f(kxk^{-1}) dk \qquad (x \in G).$$

Since K_0 is normal in K, $g \in C_c(G//K_0)$. Fix $m \in M^+$ and let $F(x) = g(m^{-1}xm)$ $(x \in G)$. Then

$$\int_{K \times P_0} g(m^{-1} \cdot {}^k \gamma \cdot pm) dk dp = \int f_{\gamma}(x) g(m^{-1} xm) dx.$$

But $pm = m \cdot m^{-1} pm \in mK_0$. Hence

$$\int_{\mathcal{H}} g(m^{-1} \cdot k y \cdot m) dk = \int f_{\gamma}(x) g(m^{-1} x m) dx \qquad (y \in \Gamma').$$

Fix a neighbourhood Γ_0 of γ_0 in Γ' such that $f_{\gamma} = f_{\gamma_0}$ for $\gamma \in \Gamma_0$. This is possible by lemma 1. Then

$$\int_{K} g(m^{-1} \cdot {}^{k}\gamma \cdot m) dk = \int_{K} g(m^{-1} \cdot {}^{k}\gamma_{0} \cdot m) dk \qquad (\gamma \in \Gamma_{0}).$$

By standard arguments, the proof of theorem 3 is reduced to the case when Γ is elliptic. Then $A_{\Gamma} = Z$ where Z is the maximal split torus lying in the centre of G. We know from the work of Bruhat and Tits that

$$K \setminus G/KZ \simeq M^{+/0}MZ$$
.

A submersion principle and its applications

101

Therefore $F_I(\gamma) = |D(\gamma)|_{\mathbf{p}}^{2} \int_{\mathbf{G}|Z} f(x\gamma x^{-1}) dx^*$

$$= |D(\gamma)|_{\mathfrak{p}}^{\frac{1}{2}} \sum_{m \in M^{+} \mid \mathfrak{p}_{MZ}} \mu(m) \int_{K} g(m^{-1} \cdot {}^{k}\gamma \cdot m) dk,$$

where $\mu(m)$ is the Haar measure of KmK. Let ω be a neighbourhood of γ_0 in Γ_0 such that $|D(\gamma)|_{\mathbf{p}}$ is constant for $\gamma \in \omega$. Then

$$F_{I}(y) = F_{I}(y_{0}) \qquad (y \in \omega).$$

Since ω is independent of $f \in C_{\sigma}(G/K_0)$, the theorem is proved.

Theorem 3 makes it possible to prove Lemma 13 of ([3], § 16) without any restriction on char Ω .

I believe it is important, from the point of view of harmonic analysis, to obtain an analogue of theorem 5 of ([1], p. 32). We give below a result which may be regarded as a step in this direction.

Take $K_0 = K$ and define $f_{\gamma} (\gamma \in \Gamma')$ as in § 4. Then $f_{\gamma} \ge 0$. Put

$$\beta(\gamma) = \sup f_{\gamma}(x) \quad (\gamma \in \Gamma')$$

and define Ξ as in ([3], § 14).

Theorem 4. Let ω be a compact subset of Γ . Then we can choose a positive number c such that

$$\int_{K} \Xi(m^{-1} \cdot {}^{k}\gamma \cdot m) dk \leq c\beta(\gamma) \Xi(m)^{2},$$

for all $m \in M^+$ and $\gamma \in \omega' = \omega \cap \Gamma'$.

It is obvious that

Supp
$$f_{\gamma} \subset \bigcup_{k \in K} ({}^{k}\gamma \cdot P_{0}).$$
 $(\gamma \in \Gamma').$

Therefore Supp $f_{\gamma} \subset {}^{\kappa}\omega \cdot P_0 = C$ (say)

for $y \in \omega'$. Since C is compact, we can choose a finite number of elements y_i $(1 \le i \le r)$ in G such that

$$\operatorname{Supp} f_{\gamma} \subset \bigcup_{1 \leq i \leq r} y_i K$$

for all $y \in \omega'$.

Now fix $\gamma \in \omega'$, $m \in M'$ and put

$$F(x) = \Xi(m^{-1} x m) \qquad (x \in G)$$

in the relation

$$\int_{K\times P_0} F(^k\gamma \cdot p) \, dk dp = \int_G f_{\gamma}(x) \, F(x) \, dx.$$

Observe that

$$F(^{k}\gamma \cdot p) := \Xi(m^{-1} \cdot ^{k}\gamma \cdot pm) = \Xi(m^{-1} \cdot ^{k}\gamma \cdot m) \qquad (p \in P_{o})$$

Harish-Chandra

since m^{-1} $pm \in K$. Therefore

$$\int_{K} \Xi (m^{-1} \cdot {}^{k}y \cdot m) dk \leq \beta(y) \sum_{i \in K} \int_{K} \Xi (m^{-1} y_{i} km) dk$$

$$= \beta(y) \sum_{i \in K} \Xi (m^{-1} y_{i}) \Xi (m)$$

from the identity

$$\int_{K} \Xi(xky) dk = \Xi(x) \Xi(y) \qquad (x, y \in G).$$

We can choose a number $c_1 \ge 1$ such that

$$\Xi(xy_i) \le c_1 \Xi(x)$$
 $(1 \le i \le r)$

for all $x \in G$. Put $c = rc_1$ and observe that $\Xi(x^{-1}) = \Xi(x)$. Then we get

$$\int_{\mathbf{K}} \Xi(m^{-1} \cdot {}^{\mathbf{k}} \gamma \cdot m) \leq c\beta(\gamma) \Xi(m)^{2}$$

and this proves our assertion.

One would like to verify that

$$\sup_{\gamma\in\omega'}|D(\gamma)|_{\mathbf{p}}^{\frac{1}{2}}\beta(\gamma)<\infty.$$

I believe this to be true but do not have a proof.

References

- [1] Harish-Chandra 1966 Discrete series for semisimple Lie groups, II. Acta Math. 116 1-111.
- [12] Harish-Chandra 1970 Harmonic analysis on reductive p-adic groups, Lecture Notes in Math. (Berlin and New York: Springer-Verlag) Vol. 162.
- [3] Harish-Chandra 1973 Harmonic analysis on reductive p-adic groups, in Harmonic analysis on homogeneous spaces (Providence: Am. Math. Soc.), pp. 167-192.
- [4] Harish-Chandra 1977 The characters of reductive p-adic groups, in Contributions to algebra (New York: Academic Press), pp. 175-182.
- [5] Harish-Chandra 1978 Admissible invariant distributions on reductive p-adic groups, Lie theories and their applications, Queen's papers in pure and applied mathematics, No. 48 (1978), Queen's University, Kingston, Ontario, pp. 281-347.

Institute for Advanced Study, Princeton, New Jersey 08540, USA