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§ 1. The Dirac matrices v, (a=1, 2, 3, 4) are characterised by the
commutation rules

VaVs+ Vs¥e= 2 8,5 (1)
These four maitrices give rise to a set of 16 quantities
1
Ya

ivays (a== b) (2)

iyysy. (a, b, ¢ all different)

Yi¥YaY Y4

which is closed under multiplication if we regard two quantities which
differ by a numerical factor — 1, i or — i as essentially the same. As is
well known these sixteen matrices are linearly independent and apart from
equivalence possess only one four-dimensional representation which is
irreducible. Several important identities concerning these matrices, which
are independent of any particular representation have been established by
Pauli (1936) by making use of the well-known results following from
Schur’s theorem. The object of the present paper is to point out that the
commutation rules of the above 15 quantities (all excluding 1) can be
expressed quite elegantly by one single formula and that the above-
mentioned identities can therefore be derived directly from the commutation
rules, It seems that perhaps the present method is more general and
{ powerful than that of Pauli. The identities are obtained in a form such
that the five elements of any pentad (see Eddington, 1936) can be regarded
as basal elements. The use of the matrix B of Pauli is avoided so that the
identitics (34,) and (34, of his paper can now be generalised to the case
¢t + Y+, ¢+ . This was not possible previously. Some new tensor

identities are also obtained.

Further the present method yiclds quite easily the matrix determinant
of a quantity composed linearly from the above sixteen matrices, As Is
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well known this deternunant 1s indepcendent of the representation used.
Fddington (1936) has already calculated it by using the rather cumbersome
method of employing a particular representation. As a physical application
of the evaluatjon of this determinant we shall consider the case of a charged
particle of spin 3 having an explicit spin interaction with the electro-
magnetic field, It will be shown that apart from quantum effects and

upto the first approximation the particle behaves as if it possessed a pure
’ magnetic dipole moment, which points either along or opposite to the

magnetic field in the rest system. This magnetic moment which arjses from |
- the explicit spin interaction is to be distinguished from the vsual magnetic
moment of the electron which is due purely to quantum effects, and which |
would therefore disappear if the non-commutability of the different operators |
were 1gnored.

§ 2. For the purpose of this paper it 15 more convenient to muliiply |
the 4°, by ¢ and use |

E, =1y, (3)
instead of y,. Therefore
EE+EE =—25, (4)
|
i The matrices E,;, E., E;, E; anticommute and their squares are equal to
— 1. Pot*
E5 = I.EEE‘_;:EBEQ, (5)
so that
E*=~—1, E.E;=~ E;E, (@=1,2,3, 4). () II
| Following Eddington we define
E;.u-r = E#Er (I-‘: v=], 2: 3, 4, 5;# = ")
'f Eni-' = E# .
1 Erﬂ = -Eﬂlig—Ep} (pH ]J 2, K S) (7)
E., =0 (v=0,1,---5).

Then the following equations hold (¢f. Eddington l.c.) foru, v=10,1,--+5
E,=—FE, (8a)
E,=E,E,=—1 (=) (30)

E, E., =E, (4 v pall different) (8¢) |

E,, Esp =F,, E, =FiEz (4, v. 0, p, A, 7 all different) {8d) |

* The present definition of Eg differs in <ign {rom that of Eddingion, The advantage is that a
nov E; == iE4EsEsEy = iv1Yayevs = iy

corresponding to (3). y, is the same as in Pauli’s paper.

Al
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In (8d) the positive or the negative sign is to be chosen according as
(v, v, o, p, A, 7) is an odd or even permutation of (0, 1, 2, 3, 4, 5). It is
easy to see that (8) is equivalent to the single equation

EA#- Erp == 0, Sup + 3#-# SM +- EM a.up _ EM’ 539

o E?‘P B#" T E#F BAF - % EruvpoT ke )

Here 3, is the usual Kronecker’s symbol
5 = {1 = v
¥ R 0 F" %{: 1!
and e,,,,,+ 1 antisymmetric in all 6 indices and egyp55== 1. It is convenient

to make the convention that the same mndex appearing once below and once
above in the same term implies a summation. Thus for example

5
EP FEW = & Ep:.- Epcr
y=o

while no summation is intended in the expression

EPF EM‘
In fact (9) can be looked upon as a tensor equation in a six-dimensional
“ spacc whose metric tensor is 8,,. Equation (9) is invariant to any ortho-

gonal transformation of this six-dimensional space, if we regard E,, as an
antisymmetric tensor. Also if F,, is any set of fifteen E-numberst, anti-
+ symmetric in A, u and satisfying the same commutation rules as (9), then

| it is not difficult to prove that

F}\.ﬁ’: ad, Pap pE],P
where a,’ are the coefficients of an orthogonal transformation of the
r six-dirensional space, i.e.,

Eﬂ;‘p a#" == 83#
r 4
laf | =1

where | a,” | denotes the six-dimensional determinant of the transformation.
Thus every matrix transformation
—_ -1
Fy, =AE, 1
is equivalent to an orthogonal transformation of the six-dimensional space.
The converse is also true due to the egrivalence of all four-dimensional

representations,

$ Any Ltwav ¢omlibanon of the E’ and 1 is called an E-number (¢f. Eddington, lc.).
Evcty matux Witk 4 rows and 4 olumns is an E-number duc to the lincar indcpendence of

the F's and ].

CURRENTSCH NCF, VOL. 68, NO 12 25 D¢t M R 1A SRR



SPECIAL SECTION

f"’"’“’“" . - 1

| Algedra of the Divac-Matrices 33
For future use we note the following relations which follow directly
from (9):—
I
E’A;.t Erp + Eﬁ.r Ep..ﬂ::_' ‘Shr Spp ""' 8.‘.# gp_a + 2 ’S,ur SAF"{" EAP S,up + Ehp. arp
l ~2E,, 8, +Ewby + Epdy, (100 |
E,*E,, =5%,, — 4E,, (10b)
Also if
S=s+s5,, EM{s,=—s5,) (11ia)
T=I+f‘1# Eh“ (th,u,-:# I.H?i) (llb)

where s, 5,,, 1, t,, are ordinary numbers it follows from (9) that

ST= st— 255, M+ (sty, + 155, — 4 5, Py — 5 526 1" eqpymp, ) M (12)

so that
ST—TS= -8, t*, EM (13a)

ST+ TS= 25t~ 45, ™+ 2 (styu + I5xu— 5 5°F 17 eqpyn,) BN (135)

In parnicular on choosing S=E, 4, (13) gives
TEqs — Eqg T=14 (e B — 15, EA) (14a)
TEag+ Eog T= 4 153+ 2 tEqg — it" €apysnp E* (145)
On contracting with ¢ (104) yields J
| TE,,+ ™ E, E,,=—3¢,+ 3,2 E,, — t,*E,,+ Té,,
+(E,,—3,,) 1 (15)
Muitiplying (140} by E8, on the right and using (15) we obtain
Eag TER, = T8, + 4 (Say— By 1-- 440aF Egy ¢ 1,8 Fgo) = 8 1oy, (16)
On confracting «, y {16) gives the well-known result
{ 2T— E* TE =321,
Multiplying (14a) by E,z on the right we get
Eag TEqp=— T+ 4 4, E*, + 4 45 E* g — 815, Egp (2 5= B) (17)
As is well known (¢f. Pauli, 1936) it follows from the commutation r

rules (9) that the spur of E,, is zero. Therefore for any four-rowed repre-
sentation

sp (T)=41
sp(E,, T)=—81¢,,
Also since 1, E,, are 16 lincarly independent matrices T in {118) can be

any arbitrary matrix of 4 rows and 4 columns. Let ¥ and ¢é be any two

matrices with 4 rows and 1 column and ¢* and ¢* with 1 row and 4 |
{ Ala
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columns. Then ¢+, b, i~ and dd+ are square matrices with 4 rows
and 4 columns and we can choose T equal to any of them. We notice that J
for T= ¢+

t=3sp (D)=} ¢*¢ (18a)
Le=—%5p (E,, T)=—3%¢Ey, ¢. (185)

Substituting these values in (118) and (146) and multiplying by ¢*+ on the
left and ¢ on the right we obtain

- ptih= 3 yrtiy-dtd — F Y*EM - *E, ¢ (19)
Y ¢+Euﬁ'1[’ + ‘;’+Eaﬁ¢' ' ¢’+¢’ = '& ‘;’+5‘6:¢’+Eaﬁ¢ + 4 ¢+Euﬁ¢" ¢t
+ g $EBS Y BN eapysn, (20)
On choosing T= ¢+ (16) gives in the same way
Y Eogh ¢t EF = Yt $td+ dtd gt — Y7E 0b ST EF (21)

b Eagh $*EE,$ = — *Egyb-$*d+ Y¥-$*Enyih
3 Egd BB+ 3 Egad BB, (e y),  (22)

=

Similarly on putting T= ¢+ (17) gives _
*Eqg ¢ $*Eag b= —J*d-¢"p— 1 $*Epq ¢ ¢*EN &
— 3 $*Ep b Y Br b + Yt Bt §*Eqpd, (o 5= B). (23)
Now let @, b, ¢, d be indices which run from 1 to 4 only. Then
following Pauli (1936} we put
P = iy )
WPEab= WE b= iy = 55, | |
G B = — Pty e = Wty =i S, ’ |
BB =— $rvaysh = Mas (@ b) @ |
M,,=0
Y Egp= Wty = 182 {
M= ¥ €50 M® } |
Here
Ys = Y1VaVaVa™ E,B,EqE = — iE;
and Yo = VaYs= -311 €atea V¥V’

where the tensor €. is antisymmetric in all the four indices and €535 = 1.
If the corresponding quantities constructed from ¢+, ¢ be distinguished by

|

e i e lal e gy} el — N e ey T s — o _J
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a dash, (19) can be written in the following form:
brdodp=—1 2.0/ +35,5°+155 - s M M+ 120 (25
Choosing a= 0, 8= 5 in (20) we get *
i b Sy + iy = — 3 Q' — 1 2R+, MUM, (26)
I Simlarly putting a= 0 in (21) we obtain
| S8 + R0 = — 2,07 + rd-drf — Pty b drvd — dryd-$ryd. 27D
On the other hand we get on taking a= 5
S84 Q00 =— 200 + r-$rb— Vb Frab— P $vd. (28)
On putting a= 0, y= 5 (22) gives

~ 8,8 =— ity - gt + ity $té
1 ¢4 b+ Sy 29) |
Also if we put =0, 8= 5 in (23) we get
— b tysp=— $t-drd+ 4 Sasﬂa‘*' 3 gﬂs""a (30)
which is the same as equation (44 P).* From (30) and (25) we get ]
—Pryspdtyd— P =3 R0+ EMLM O3 08 ()

which corresponds to equation (43 P). Equations (26), (27), (28), (29) and
(31) can be written in the following form:
E MM = 5 (2u9 + 290)= (b4 v — 8- yeh)
+ (¢ Yty — -4t yeed) (32)
28,58 ==280Q2) — 2 Q. — (v, d- ¢+ — Jryb-6*y°$)
— (ftysd prysh— v rvsd) + (P ST — Ytihdid)  (33)
28,8°= =200, — 2 0,0) — (7.8 ¢V — .- +7°9) |
~ (e Py — Py $ryed) + (PPt~ Y- $H4) (34)
— 28,8 =i {dtyh It b — I yd- |

+ 3By b B P = 2, b0 Y (35)
§ MM = 2,00 — 0,0, — 2 (¢ ¢rf— - v ¢)
— 2 (frysd- bty — Prveddtrs) (36)

e

* P refers to Paull's paper.

L" T — . A
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1

Equations (32) to (36) are the generalisation of equations (34, P), (34, P).
(34, P), (34;P) and (34, P) respectively. Equations (32) and (36) have !
already been given by Pauli as equations (47 P) and (43 P). The others
were not obtained by him. It is noteworthy that we have derived the |
i identities directly without employing the matrix B of Pauli. ©One more
interesting identity can be derived by interchanging ¢+ and 4+ in (23) and
putting =0, B= 5
38y Ity bt 3y = — 0] - 2.0,

However on putting ¢*=J* and ¢= ¢ it degenerates merely into the sum |
' of (34, P) and (34, P).

It may be mentioned here that it is possible to derive fensor identities
in addition to the invarigmt identities given above, by choosing other |
suitable sets of values for ¢, § and » in the equations (20) to (22). On
putting ¢= ¢ and ¢+ =+ the following identities are obtained:

M 88— 2,S,=0 [¢=0, 8= a in (20)] (37a)
M_,SP+ 2,5, =0 [a=a, =5 in (20)] (376)
M, 2+ iQMu+ i (8,5, — SS,)=0 [a=a, B=5bin(20)]  (37¢)
M,;S°+ i8S, =0 [a=0, y=a in 22)] *(37d)
M ;S — iRS =0 [a=a, y= 5 in (22)) (37¢)

S.Ss+ S.Ss+ M _M%=—35,2.2 [x=a, B=b in (21) or (22)] (37 f)

The generalised identities for the case ¢ == ¢ and &+ == ¢+ can be obtained
by similar substitutions and they need not be given here explicitly. I

§ 3. Now we shall calculate the matrix determinant of T. As is well
|  known this determinant, which we denote by det. T is the same for all four-
dimensional represeniations of E,,. In fact it is equal to the independent
term in the characteristic equation of T. It is therefore sufficient to
determine the characteristic equation. For this purpose we make use of
| (12) and find that

T_I=I}‘FE%‘# 1

(T— 2=~ 21, b~ 2' (5P 1¥8 ey 50, EM

{(T""" f)3+ 2 I#Pf#p}ﬂ—" ‘% Iﬂﬁt}‘ﬁ Eﬂﬂl"ﬁhp Ehﬂa’ﬁ'}"a}n.—ﬁfﬁ,fﬁa

i sor s s
1 =3 (“.3}1“’1'[#”{#1, e¥3p Vo Lyvla's: En’eymthP

* This identity was mentioned by Prof. Bhabha in a lecture

L Wara
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]
=g fuﬁpmnm;ﬂ 16 (fnﬁfhp — taglap— tﬂtﬁp} FAp
= 2 jeaBurery f o (Lagth BN — 2 15al5 EM)
== 2 {e®Btroty ot Jor (T— 1) — 41 44,15 peffrraTy 1t Ere (38)
Now
Eaﬁpnu'rfﬂrrdf - %_ rAF fﬂﬁ#l‘ﬂ"rfnﬁf“p[ﬁ (39)

lr farTgp

(39) is easily verified for a tensor’ t,, whose only non-vamshing compo- +
nents are fy;, f23, fs. Since by a suitable orthogonal transformation every
antisymmetrical tensor ¢, can be brought into thus form, it follows that the L
invariant equation (39) holds for every ¢f,,. Also

] fuﬁ‘rshpfhpu,ﬁr?’s'fa'ﬁ’rr’ﬁ' = 16 (fn,&'frﬁ — fartﬁa - fuﬁf}'ﬁ)- (40}

Substituting (39) and (40) in (38) we get |
{(T— 02+ 21, 05%)3— 8 {(19Blag)® — 2 181510154}

— & 1 tagtysthp<tf7 (T— 1) =0 (41)

Equation (41) is the characteristic equation of T. Putting T=0 on the
left side of (41) we obtain the term independent of T so that

| det T= (2 1,1 + 122 — 8 {(1%F 15,)% -~ 2 (1P 1g, 1" 150)} 1
| t i tag1,510p SRV (42)

(42) agrees with the result given by Eddington* (1936). For the purpose
of the following discussion it i1s convenient to replace T by T where

o that oA “

det T'= (12+ L 2,,0#)2 — 4 {(1°8105)% — 2 19815 ,17015,}

¢ toplyslagenf 1Pt (44)

Let us -now revert from EM to the original matrices E, and their
products. Obviously T" can be put in the form

T =1+t E°+ 1} fa&Eaé‘}“é EH&E'EEE&EESJ

*2—-1:4 S Eab‘dE‘IEﬁE{Ed (45)

Here a, b, ¢, d run from 1 to 4 only and ¢, and s, are four-dimensional
vectors while s is a scalar. From (5) we have

* Eddingtoh has chosen Eg = — iE EE,E4 and therefore in his case the sign of ¢ in (42)
is reversed. |
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flﬁl EG&JEEE&ECEJ= - EE5= - IEW (46&)
%— Eﬂ&dEaEﬁEfﬂ': I'EEEJ: - iEdﬁ. (46b}
On comparing (43) and (45) and using (46) we find
toa = I, ]
Loe==5_ L (47)
f0s == .

For brevity the following notation for any vector A, or a tensor B, is
introduced

| A |2 = AA® (48a)
| B,s |2 = 4 B,,B¥ (48b)
Then
3RV = 1009 | 1 13 Lol 1,0l
e R 7 e ol E 778 e o A s (49}
Also put
(fz)mf = (1%ya = rn'etﬁv= ranror"‘ tuarar'{' 1q sy
so that
(3 =— 2~ | 1, |? (50a)
(82)gs = 1155 — 554 {(505)
(12,5 =— Lbs+ U ty— 555 (50¢)
(19, = — St,+ 1,05 (304}
(12 =15, (50¢)
(e —— 5t |5, | (501)

Thus we have
taglBYlystBe = (1%q,(£*)%7
= (12) o (1D)% + (195 (13)35 + 2 (1Pho5(£2)% + 2 (19, (5
+ 2 (10,5(12% + (1), 1D
= (s24- |1, |O2+ (24 | 5, [P+ 2 (% )2+ 2| 1%, — 585 |°
4+ 2| t 05y sty 124 2| talst SaSs— 81 |7 (S1)
From (44), (47), (4% and (31) we have
det. T'= (24 | £, 124 | 1as 124 | 8o |24 502 —= 2 £ {2+ | too P+ Lsa [T 570
(24 | 2, |24 (3 |8, 197+ 2 (178 + 2 | 1%,6 — 555 |
+ 21— sty |2+ 2|ttt Sass— 1l |
4§t €A Ai 18 (52)

since
: ded
fuﬂfrﬁr«lpfuﬁrahp: 6 tmfaﬁfad‘“wﬁ“f‘f' 24 1o, ts 1€

AFEp— il
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Instead of E_ or y, which satisfy (4) or (1) respectively it is convenient
to introduce the matrices a, (0k=0, 1, 2, 3) whose commutation rules are
a,a,+ a,a,= 28, (53)

where g,, is the usual metric tensor of flat space-time (g, =0, p== v,
oo =—8n=—gn=—gss~ 1). For this purpose 1t 1s sufficient to choose
(21, a3, a)=(E,, E,, Ey) and ey=~ iE;=1v, From now onwards the
greek indices run from O to 3. We make the convention that for any
tensor A;...

fﬂAm}n= A (34)
where A, denotes that among a, b, - there are » indices equal to 4. The
new quantity A, defined by (54) is obtained by replacing each index 4 by
0. Since for raising the greek indices we use the tensor g#v the following =

{ relation holds +
Ap.l"" er...=(_ l)fn Adé_”Ba&...

where m is the total number of indices 4, b,--- in each of the tensors
A...and B”- - - which are contracted together. Also from (54)

€0123= — €3930~ §€1034 = {.
Therefore we put

) E;.l.w.rf = i’?p.w‘r
where ngs3= 1. Thus {45) and (52) can be written as
T =1t—1,0¢+ } 1, a¢a" — } n,,,r aha’a’s?

3 § Tper GPaaar (55)

det T'=(t*~ {1, 2+ 11, P— {5, 1P+ =2(— 1, |2+ )1, |*
— |5, {24 5%)*
F2— 1, 192+ (52— 5, 1924 2 (145,07 — 2 55, + 28, |
—-2)st, 4125, 12+ 2) 1,0, 45,5, 4 1,01, |2
— § &y b PYITL — 4 Lt oSy NHPOTL, (56)
A notation similar to (48) has been employed in (56) for greek indices also.

The above result can immediately be applied to discuss the case of
a particle of spin 4 having a charge- and dipole-interaction with an electro-
magnetic (or meson) field. If p, be the energy-momentum vector of the
| particle, ¢, the electromagnetic potentials and F,, the field-strengths the
wave equation for the particle can be written as

(a# (P~ Bub) + 5 &aaa*Fyy + 1} =0 (57)

V50 CURRINT SCHNCE. VOL. 63, NO 12 25D CENBER 19493
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Here g, is the charge and g, the dipole-strength and m the mass of the
particle. Our object is to determine the classical analogue of this particle.
Hence we treat p,, ¢,, F,, as numerical quantities commuting with each
other. This corresponds to thc neglect of quantum effects. As 1s well
known the condition for the existence of a solution of {37) is that

det {atm, + 2‘ ga#a’F,, + m} = 0. (58)

Here =,=p,— £,%9, and we have written g instead of g, for simplicity.
(58) corresponds to the classical equation of motion of the particle.
Comparing (58) and (55) we find

= m
tﬂ=— 7y
tpu'= ingv
8, = 0, 5s=0

so that on account of {56), (58) reduces to
(m,m* — mP+ % g%F, F#)2 — 4 ot (1 gF,  Fro) — 2 (3 g°F, ,F#7)3

— 4 g¥n FOF, m° + g°F 'F FeTF # = 0. (59)
Now |
F B F  Frt=2 (3 F, F*)+ (§ F, F#)? (60)
where F*#* is the tensor dual to F#* and is defined by
Ftppr_ %7]#"'#1" Fﬂ (61)

Equation (60) is easily verified for the particular Lorentz-frame in which
only F,; and F,, are different from zero. Since it is a tensor equation i
it must hold for every other frame also. Thus we obtain from (59) and (60)

[7, 7% — m?+ } g°F, F* ]2+ 4 {(17°F,F'¥W): — mat (} &°F,  F*9)

l — g% FoF, no = 0. (62)
When the explicit spin interaction is absent g= 0 and (62) reduces to the

| usual classical equations of a point-charge

m, i — mé= (. (63)

‘ In this case

T,=MY

W= mo, (64)
where v, is the classical four-velocity of the particle.  Since we wish to retan *

only terms of the lowest order in g in (62) we can substitute (64) in the terms
of (62) containing g, so that on ignoring terms of the order g3, (62) becomes

(7, 7% — m? } gk, Fw)t = d mge (] F 1# — F F4) (65)

h— ——— b i el Nl w L — %‘

Uy |
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where F = F,,». Therefore

m b= mi=-t 2mg /JF, F5— F A (66)
l if the second and higher. powers of g are neglected. Now
1F F#— F Fr=H?
| where H is the magnetic field in the rest system of the particle. Therefore
ot —m=+2mg | H| (67)
For the non-relativistic case we find on putting my==m+ W that

W=7 +g|H 3
| zﬁ::gl | (63)

where == (=, m, m3). (68) shows that in the rest system and in a weak
electromagnetic field the particle manifests only a magnetic moment g such
that the direction of the moment is either along or opposite to the magnetic
component of the field. This is precisely what is to be expected of a
particle of spin 1.

I am thankful to Prof. H. J. Bhabha for heipful comments and advice.

\ SUMMARY

| The Dirac-matrices generate an algebra consisting of sixteen linearly
independent elements. A formula is given for expressing the product of
any two elements as a hnear combination of these sixteen. This determines
the structure of the algebra completely. It is shown that certain known
identities concerning these matrices can be obtained comparatively easily
by the present miethod., Some new identities are also deduced.

The characteristic equation of a general element of the algebra is derived
and from it an expression is obtained for the determinant of any four-dimen-
sional matrix representing the element,, This expression is used to discuss
the case of a particle of spin 1 having an explicit spin interaction with the
electromagnetic field. It is shown that in the classical himit # —0 and upto
the first approximation in the interaction constant g the particle manifests
only a magnetic-moment g in the rest system, the direction of the moment |
being either along or opposite to the magnetic field in the same system.
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