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In 1990 Secnovilla! obtained an interesting cos-
mological solution of Einstein’s equations that was
free of the big-bang singularity. It represented 2an
inhomogeneous and anisotropic cylindrical modcl
filled with disordered radiation, ¢ = 3p. The model
was valid for # 5 ~ o to £ - oo having all physical
and geometrical invarianis finite and regular for the
whole of spacetime, This was the first instance of a
singularity-free cosmological wmodel, satisfying all
the energy and causality conditions and remaining
true to general relativity (GR). Subsequently a
family of singularity-free models has bcen
identified?. In this communication we wish to potnt
out that a simple and natural inhomogenization and
anisotropization, appropriate for cylindrical sym-
metry, of the Friecdman—Robertson-Walker (FRW)
model with negative curvature leads to the same
singularity-free family. It consists of the compicte
set of singularity-free general solutions of Einstein’s
equations for perfect fluid when cylindrically sym-
metric metric potentials are assumed to be separable
functions of radial and time coordinates.

THE standard Friedmann-Robertson-Walker (FRW)
cosmological model has been quite successful in des-
cribing the present state of the Universe. It prescribes a
homogeneous and isotropic distribution for its matter
content. It is though realized that homogeneous and
isotropic character of spacctime cannot be sustained at
all scales, particularly for very early times. Further-
more, not to have ta assume very special initial
conditions as well as for formation of large scale
structures in the Universe 1t is imperative to consider
inhorcogeneity and anisotropy.

The first step in this direction came in the form of the
study of anisotropic Bianchi models. Then inhomo-
geneity was also brought in and some inhomogencous
models were considered??. One of the main chara-
cteristics of the Einsteinian cosmology is the prediction
of a big-bang singularity in the finite past. All these
models (Bianchi as well as inhomogencous) suffer from
singularity at £ = 0. This experience was strongly aided
by the general result that under physically reasonable
conditions of positivity of cnergy, causality and regulanty
etc., the imtial singularity is incscapable in cosmology so
long as we adhere to Einstein’s equations (singularity
theorems®). This gave Tise 10 the folklore that the big-bang
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singularity is the essential property of the Einsteinian
cosmology and it can only be avoided by invoking
quantum effects and/or modifying Einstein’s theory.

On this background it was really refreshing when
Senovilla! obtained a new class of exact solutions of
Einstein’s equations without the big-bang singularity.
It represented a cylindrically symmetric Universe filled
with perfect fluid (o= 3p). It was smooth and regular
everywhere, satisfied the energy and causality condit-
ions and all the physical as well as geometrical
invariants remained finite and regular for whole of
spacetime. This marked the advent of singularity-free
cosmology. It is important to recognize that the
occurrence of singularity is not the general feature of
Einstein’s equations and for its avoidance 1t is not
always necessary to resort 1o quantum cffects and other
fields. The classical Einstein’s theory does admit cos-
mological models without singularity with physically
acceptable behaviour for its matter content. It should be
noted that prior attempts to construct singularity-free
models had either to ascribe physically unacceptable
behaviour for matter leading to violation of energy and
causality conditions or to invoke quantum effects or
modification of general relativity (GR)® '%- Senovilla’s!
was the first singularity-free solution true to GR, con-
forming to enetgy and causality conditions. Not only
are physical parameters firite and regular, the solution
has been shown to be geodesically complete!!. Physic-
ally it means that a test particle will never encounicer a
singular state for arbitrarily large values of its affine
parameter. That is the particle trajectory will never
terminate anywhere.

One may wonder — how do these solutions ¢scape
singularity theorems8? It is because they do not satisfy
one of the assumptions of the thecorems, namely
existence of compact trapped surfaces®. This assump-
tion has always been a suspect and does not appear as
obvious and natural as the energy and causality
conditions. Violation of this means that nowhere 1n
spacetime gravity becomes strong enough to focus fluid
congruences in a small compact region so that all
particles including photons get trapped. The occurreénce
of such a situation appears natural for gravitational
collapse but by no means so for cosmology. For
instance, even the open FRW model, that has big-bang
singularity, never encounters a trapped surface. Hence
existence of trapped surfaces cannot be a natural
property for cosmological models. All previous
attempts to construct singularity-free models have
tampered the energy or causality conditions or GR. The
remarkable feature of these models is that they adhere
to all physically acceptable conditions and avoid the
application of singularity theorems through non-
existence of Lrapped surfaces.

Ruiz and Scnovilla? have separated out a fairly iarge
class of singularity-free models through a compre-
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hensive study of a general cylindrically symmetric
metric with separable functions of r and ¢. Here we
wish to establish a link between the FRW model and
the singularity-free family by deducing the latter from
the former. It works like this: transform the FRW
metric with negative curvature into cylindrical coordin-
ates and then introduce inhomogeneity and anisotropy
by pasting the functions, that occur in FRW, with
different powers in the metric coefficients. It is a
simple and natural inhomogenization and anisotropiz-
ation process that leads to the singularity-free family.
We begin with the FRW metric for the open Universe,

dr?

]+ 72

ds? =ds? ~T2(r)( +r2d@%+r?sin? 0dg 1] (1)

and transform it into cylindrical coordinates

dr?
d s2 =dr2~T2(r)( r
1472

+{1+72)dz? +F2d¢2) (2)

by the transformation

F
r=(sink*z +7*cosh?z)"?, tanf= — —. (3)
sinhzV1+72

Further writing m7 = sin(mr)and then dropping caps
to write

ds? =d 2 - T?()(dr? +cosh?(mr)dz?
+ar-2 sin b2 (mr)d@?). (4)

Let us now inhomogenize and anisotropize the FRW
metric by writing

ds? = T2% cosh2a(mr)(d 2 —dr2) ~T2Pcosh?® (mr)dz?
2 sinh? (mr ) T?? cosh?® (mr )d¢* (3)

where we have used the coordinate freedom to write
g2¢=\g,,|- We could have as well used the form (2).
Taking the natural velocity ficld u = 7% cosh® (mr) d,
the isotropy of fluid uniquely determines

T =cosh(kt), a=y. (0)

With this the metric (5) is the family of singulanty-free
models identified by Ruiz and SenovillaZ.

Notice that m-2sink2(mr) is simply to ensure 2R
periodicity for the angle ¢ and elementary flatness ncat
the axis and hence it doecs not participate in the
inhomogenization and anisotropization process. Ruiz
and Senovilla? have taken g+ =1 and diflcrent
undetermined funclions of r in place of cosh{mr) and
have found thal al} functions are expressible as powers
of the same function cosh (mr). For time dependence
T = cosh (kt) is the general solution. Even if we take
S+ y# 1 and different T'(s) functions, it turns oul that
they can all be given as the powers of the single
function, as given by (6). Thus the mctric (5) with (6}
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forms the complete set of singularity-free solutions of
cylindrically symmetric metric with separable functions
of » and ¢.

For singularity-free models, both Weyl and Ricci curva-
tures should be regular and their regularity for the
metric (5) demands = y. The isotropy of pressure con-
strains the parameters and it Can be shown that the only
two following cases give rise to singularity-free models;

(Yb=c,a=y,a+pf=1,a=-b/(1+2b),k =(1+2b)}m,
(iiYb+e=l,a=y,a+B=1,a=-b(1-b), k=2m.

In the former case there does not occur an equation of
state p= up in general, however for & = - + we obtain

the Senovilfa! radiation model with p = 3p. In the latter
case it is always p = p giving the stiff matter model'?.
The matter-free limit (o = 0) of the stiff matter model
yields two distinct singularity-free vacuum solutions. It
may be noted that all these are the general solutions in
the given setting.

The kinematic parameters, ¢expansion, shear and
acceleration are given by

8= (a+1)ksinh (kt)cosh-a-1(kt) cosh—a(mr)
o2 =2 (2 - 1)2k2sinkh? (kt)cosh-2o+ B (kt)cosh-2a (mr)
i, = —amsinh{mr Ycosh-a-1(imr)cosh-a(kt).

It is clear that th¢ above kinematic parameters ase
regular and finite all through the spacetime. We have veri-
fied that so are the physical parameters p, p and the
Weyl curvatures. The general behaviour of the model 15
the same as that of the Senovilla’s radiation model. As
f— + oo density and curvatures tend to zero though the
metric does not go over to the Minkowski form. The
Universe begins with low density at £ —» —00, contracls to a
dense state at £ = 0 (where deasity can be made as large as
one plcases by specifying the parameter £) and then starts
expanding to reach the initial state (f — —) as t = .
At t = 0 both expansion and shear change their sensc.

It appears that presence of shear and acceleration
seems to play an important role in avoidance of sing-
ularity. It is conceivable that they do not let fluid
congruences to focus into small enough a region to
form trapped svrfaces leading to singularity. When fluid
congrucnce has non-zero acceleration, there occurs
spatial pressure gradrent which will counteract gra-
vitational attraction to give rise to a bounce to the
modcl, This is how contraction changes Into expansion
at £ =0 without letting the Universe to pass through a
singular state. The shearing of the congrucnce has 2
dcfocusing cffect. Their presence alone however 1S not
sulficicnt to avoid singularity as thcre exist singular
modecls with non-vanishing shear and acceleration. For
instance replace cosh (k), in the above by stnh (kg to
get a class of modcls with the big-bang singularity with
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shear and acceleration present. Thus it may perhaps be
the nccessary condition but not sufficient. This added
with the regularity of Weyl and Ricci curvatures, and
encrgy conditions may lead to sufficiency. We have also
verified that the metric (5} is geodesically complete!?

for @20, a+f#20, a2p, a=20, a2b, a+b290, and
b<0.

The metric (3) with {6) can as well be cast in the form
ds? =(1+k22)- (I +mri)e 412
—(l+ kx4 m2r)-1dr2 - (14 £2¢2)6
(Q4+m3r2)ed 22 = r2(1+ k222 (1 +mir2)edg? (7)

which teduces to the FRW from (2) for a= =1,
a=c=0 and b=1, where T(H =1 +k4). 1t is
interesting that if one just uses hyperbolic or (I + k%)
functions, which arc clearly the obvious choice for
singulantv-free spacetime, one ends up with the famly
of singularity-free models. However the cylindrical sym-
metry seems to play an important role. The above pre-
scription does not obviously work in spherical symmetry.
A lentative prescription for a singulanty-free spacetime
may be as follows: Use non-singular elementary funct-
ions having no zeros as metric potentials, and ensure
regularity of Weyl and Ricci curvatures with non-zero
shear and acceleration. This 1s just the broad setting,
the fluid consistency conditions and encrgy conditions
are then to be satisfied. This prescription does vield
acceplable fluid models for cylindrical symmetry.

One may ask the question, how robust is the
singularity-free framework in relation to accommodating
other force fields? It turns out that viscosity cannot be
included without sacrificing positivity of viscosity co-
cfficients for all time' while the radial heat flow can
casily be included'’, Both the cases above can be gene-
ralized to have radial heat flow. Note that for p= up, y
can have the only two discrete values (=1, 3). If we
introduce massless scalar field along with perfect fluid
in the case (1), the resulting fluid can have an equation
of state, 4 > u > 3, opening out a narrow window for u.

Finally, the most pertineni question for the
singularity-free models is: how to evolve them into the
(present day) FRW models? The guestion is inherently
very difficult because the former are cylindrically
symmetric whergin a direction is singled out while the
latter are spherical having no identifiable direction. It
may be noted that the ratio of shear to expansion, that
measures the anisotropy, 1S a constant for these models.
We have here established a linkage between the two,
which may help in reconciling them together. The
affirmative answer 10 this question will have very
important bearing on our overall cosmological percept-
ion of the Universe and, in particular, for the early
Universe cosmology. The other question is, do there
exist general solutions without any symmetry or is
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cylindrical symmetry singled out for singulanty-free solut-
ions? Details will be given in the forthcoming paper'®,
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Note added in the proof. Since the submission of the paper
we have proved the general resuit establishing the uni-

queness of the metric {5) with (6) for singularity-free flu1d

models when space-time metric is separable in space and
time coordinates,
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Use of organic geochemical markers
in elucidating the origin of salinity

in coastal groundwaters
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The present paper demonstrates the possible appli-
cation of organic geochemical markers in elucidating
the origin of salinity in coastal groundwaters. The
study carried out in the ground waters, estuarioe
sediments and aquifer material in the coastal
Karaikal repion of Cauvery delta has shown that the
estuaries/modern marine bodies and their intrusions
in groundwaters ¢can be evidenced by the presence of
hopanoic and vaccenic acids whereas the palacomarine
intrusions in groundwater have the signatures of
biomarkers like those of palmitoleic and oleic acids.

This finding is supported by iodide/chloride ratio
and radiocarbon dating of groundwaters.

THE study of salinity in groundwaters has gained
importance as being one of the environmental
problems. Moreover, the salinity of groundwater has
direct bearing on agriculture, The salinity in the
groundwater could be due to a number of natura'

CURRENT SCIENCE, VOL. 63, NO. 9, 10 NOVEMBER 1993



