fractionated carbonatite, with relatively high normalized ratios for La, Ce, Nd and Ba but with a relatively lower ratio for Sr as shown by Clarke et al.3. Nb, Zr and Ti have smaller ratios as appropriate to elements that occur in minerals commonly fractionated early from carbonatite magma, i.e. pyrochlore, zircon and titaniferous magnetite. P is also usually much reduced in fractionated carbonatite owing to the early separation of apatite, but in Figure 1, P is only slightly lower than that of the average carbonatites plotted. This surprised us because there is no apatite in the dyke.

The P in this dyke is associated with the britholite–(Ce) (the silicate analogue of apatite which contains minor P) as well as rare monazite–(Ce) (30 wt% P\textsubscript{2}O\textsubscript{5}) and daquingahsanite4.

The mineral assemblage reported above and its texture has not been previously recorded. The Sr content of the strontian-calcite in the dyke reaches 13 wt% which is believed to be highest ever reported. The texture and mineral compositions indicate primary crystallization from a carbonatite magma rich in REE, Sr and Ba. The coexisting composition of the calcian stroncianitane and stroncian-calcite suggests subsolidus exsolution at 500°C and 2 kbar pressure.

Received 20 February 1993; accepted 17 May 1993

First record of marine macroinvertebrate from Bhuj Sandstone (Lower Cretaceous) of eastern Kachchh

U. K. Shukla and I. B. Singh*

Department of Geology, Kumaun University, Nainital 263 002, India

*Department of Geology, Lucknow University, Lucknow 226 007, India

The record of shell impressions (external moulds) of \textit{Indotrigonia}, a marine bivalve from Bhuj Sandstone, the youngest lithostatigraphic unit of Kachchh Mesozoic, supports the marine depositional environment of Bhuj Sandstone. This finding also supports the contention that during deposition of Bhuj Sandstone a rich bentonic population was present (as evidenced by the presence of rich trace fossil assemblage). However, the highly porous nature of sand caused dissolution of shells during diagenesis, destroying the body fossils but preserving the trace fossils.

The Mesozoic rocks of Kachchh are well-known for their fauna and flora1–7. Bhuj Sandstone (Bhuj Formation = Umia Formation) is the youngest lithostratigraphic unit of Mesozoic sequence of pericratonic Kachchh basin (Table 1). It is extensively developed in the Kachchh mainland and represented mainly by sandstones with occasional silt and clay horizons. Bhuj Sandstone is mostly devoid of animal body fossils, except in western part where few horizons rich in macroinvertebrates are present8. Recently, trace fossils have been recorded from Bhuj Sandstone9–12. Absence of animal body fossils and presence of plant fossils in Bhuj Sandstone are considered as main argument to support a fluvial or continental origin of Bhuj Sandstone9. However, facies association and trace fossil studies suggest a coastal marine environment of deposition for Bhuj Sandstone11–14.

During regional facies study of Bhuj Sandstone, three shell impressions of marine bivalve are recorded from a fine-grained sandstone unit of Bhuj Sandstone, exposed in the vicinity of Bhuj town along Bhuj–Mandvi road (Figures 1 and 2). This is the first record of animal body fossils from the eastern part of Kachchh mainland. These body fossils are described in the following and their significance is discussed.

Classification

Phylum: Mollusca
Class: Bivalvia Bonnani, 1681
Sub-class: Palaeoheterodonta Newell, 1965
Order: Trigionoida Dall, 1889
Superfamily: Trigoniacea Lamark, 1819
Family: Trigoniidae Lamark, 1819
Genus: \textit{Indotrigonia} Dietrich, 1933

\textit{Indotrigonia smeii} (Sowerby)
Plate I–a, b & c

\textit{Trigonia smeii} Sowerby15, 1840 Plate III, Fig. 9.
Plate IV, Fig. 1–3, Medicott and Blandford16, 1879 Plate XII, Fig. 11 Kitchin, 1903, p. pl. III, Fig. 9, 9a (ref. 3).

\textit{Indotrigonia smeii} (Sowerby) – Dietrich17, 1933, p. 30, pl. III, Fig. 48–51, 54–56.

Material. Three external moulds.

Diagnosis. The shells of \textit{Indotrigonia} are characterized by an elongated oval form with well incurved and
slightly recurved, umbones, situated at about one-fifth of the shell’s length from the anterior margin. The external surface shows regular, concentric ornamentation of flank with costae ranging in number from 20 to 25 (in fully grown individuals). The shell shows well marked marginal carina and the highly differentiated area with fine longitudinal ornaments, median carina and groove, the inner carina and well-marked escutcheon².

Description. The shell impressions are oval and elongated, and represent the negative impression of outer surface (external mold) of the left valve of *Indotrigrina* shell (Figure 3).

The specimens as now preserved are broken along all the margins. The umbo, situated at about one third of the shell’s length from anterior margin, is angular and not prominent. The flanks are ornamented by rounded concentric costae numbering in one case to 12 (Figure 3a). The costae of the flank are separated from one another by spaces as broad as the costae themselves and seem to terminate posteriorly at antecarinal groove which is not very prominent and is represented only by a slight constriction of flank costae or a depression. In contrast, the costae of the area are narrower and more numerous, eighteen in number. The increase in the number of costae of the areas is because of the fact that some of the flank ribs give rise to more than one costae (costellae) in the region of area.

Table 1. Stratigraphic classification scheme for Kachchh Mesozoic. The subdivisions of Bhuj=Umia Formation are developed only in western part. In eastern Kachchh (study area) the sequence is developed as sandstone facies and the whole sequence can be designated as Bhuj Sandstone (Bhuj Formation=Umia Formation).

<table>
<thead>
<tr>
<th>After Biswas (1977)</th>
<th>After Jaikrishna, et al. (1983); Howard & Singh (1985), based on older classifications</th>
<th>Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhuj Formation</td>
<td>Upper Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ukra Member</td>
<td></td>
</tr>
<tr>
<td>Ghuneri Member</td>
<td>Umia Formation</td>
<td></td>
</tr>
<tr>
<td>Katesar Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jhuran Formation</td>
<td>Upper Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Member</td>
<td></td>
</tr>
<tr>
<td>Member IV</td>
<td>Katrol Formation</td>
<td></td>
</tr>
<tr>
<td>Member III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member D</td>
<td>Patcham Formation</td>
<td></td>
</tr>
<tr>
<td>Member C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jhurio Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

- Greatest length: Specimen-1 90 mm, Specimen-2 60 mm
- Height measured from the umbo: Specimen-1 40 mm, Specimen-2 30 mm

Remarks.

Originally described by Sowerby¹⁵, *Indotrigrina* is reported to occur in the Umia Group (Oemia Group) in beds both below as well as above the horizons containing plant fossils. It does not show any specific association with other *Trignia* forms of Umia Group and occurs in abundance in separate localities.

According to Kitchin *Trignia smeii* occurs in association with *Trignia ventricosa* Krauss, and also shows some affinity with European representatives *Indotrigrina* is also known to occur in Uitenhage Series of South Africa.

Repository.

The material is deposited in the Department of Geology, Lucknow University, under GEOLU/B.F. 201,GEOLU/B.F. 202, GEOLU/B.F. 203.

Occurrence.

The shell impressions identified as *Indotrigrina* are recovered from interbedded sandstone-siltstone lithofacies of Bhuj Sandstone exposed about 4 km south of Bhuj town (Figure 2) on the western side of Bhuj-Mandvi road. The locality is situated about 100 m from the Bhuj-Mandvi road behind the hillock. The
Figure 1. Sedimentological log of Bhuj Sandstone showing major lithofacies and stratigraphic position of body fossil near Bhuj township.

Figure 2. Map showing outcrop pattern of Bhuj Sandstone in Kachchh basin. Arrow mark shows the fossil locality (modified after Howard and Singh, 1983).

Figure 3. a. Photograph of a rock specimen showing a complete external mould of left valve of Indotritypa sp. Note the different pattern of costae on either side of ante-costaal groove. Bar = 20 cm. b. Photograph showing Trigonia shell impressions preserved in coarse-grained bioturbated sandstone. Bar = 20 cm. c. Photograph of a rock specimen showing external mould of Indotritypa sp. Note the branching nature of costae. Bar = 20 cm.
RESEARCH COMMUNICATIONS

Sediments containing the fossil impressions are fine-to-medium-grained, bioturbated sandstone, somewhat ferrigenous. One of the impressions is found preserved in gravely coarse-grained sandstone, which is highly ferrigenous and bioturbated.

Significance of shell impressions. As already pointed out, due to absence of animal body fossils, the entire succession of Bhuj Sandstone in eastern part of Kachchh mainland is mostly considered to be fluvial or deltaic deposits.

However, systematic study of Bhuj Sandstone in eastern part, using lithofacies analysis and trace fossils studies points to a tide-dominated shallow marine setup for the deposition of Bhuj Sandstone. Bhuj Sandstone shows a varied trace fossil assemblage and many densely bioturbated horizons. It is argued that at the time of deposition of Bhuj Sandstone, a dense population of benthonic animals was present which produced varied trace fossils. Some of these benthonic organisms were soft-bodied hence they are not preserved. Further, the shells of molluscian population also got dissolved by percolating pore waters. Many ancient porous, clean, coarse-grained sediments of coastal origin do not preserve animal hard parts, as they are dissolved during diageneosis, but show preservation of trace fossils.

The record of external moulds of Indotriconia in poor state of preservation lends support to the hypothesis that during deposition of Bhuj Sandstone a good population of benthonic community existed; but their hard parts have been destroyed during diageneosis. It appears that fine-grained matrix-rich facies of Bhuj Sandstone may yield more animal body fossils, as due to low permeability such horizons are more suitable for the preservation of shells. Indotriconia is a marine bivalve living mainly in the coastal zone of a shallow sea. This supports a coastal depositional environment for Bhuj Sandstone.

ACKNOWLEDGEMENTS. Financial assistance from CSIR, New Delhi in the form of SRF to U. K. S. is acknowledged. Help and support provided by Prof. K. S. Valdyia to U. K. S. is gratefully acknowledged.

Received 30 December 1992; accepted 6 January 1993

In vitro developed desirable somaclone of upland rice (Oryza sativa L.) cultivar, Halubalu

S. N. Vajranbhaiah and P. Chandrashekara Reddy
Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India

Somaclonal plants regenerated under stress from rice calli of cv. Halubalu, which had the same height as seedstock material, showed significantly higher tiller and leaf numbers and leaf area per plant. Above ground biomass, grain weight and number per plant and assimilation (A) and conductance (g) rates and germination per cent and seedling vigour were greater than those of seedstock plants.

SOMAClONAL selection, a novel technique, has helped develop crops with desirable characters. Somaclonal plants with desired traits have been developed in sugarcane, potato and tomato. Tissue culture-derived plants of wheat differing in height, tiller number and other yield attributes and maize plants differing in useful morphological characters were obtained by in vitro selection. Rice calli on redifferentiation gave different phenotypic plants. Plants obtained from callus cultures exhibited differences in height, number of total and fertile tillers and panicle length. Male sterile (ms) indica rice lines and fertile revertants in ms maize and phenotypic variants in basmati rice were obtained by this technique. Attempts to develop submergence tolerant rice and water weevil resistant rice lines show the potentiality of this

CURRENT SCIENCE, VOL. 65, NO. 2, 25 JULY 1993