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In this article, 1 describe a few aspects of natural
language processing (NLP), specifically some recent
trends. I have chosen these topics as they cover a wide
range of current efforts in NLP. They are also
sufficiently diverse ranging from new avenues of research
in grammars and parsing, statistical approaches to NLP,
a2 relatively new trend in NLP, and integration of
language and graphic/animation modalities, a new
domain for investigating semantic and pragmatic aspects
of language.

— s

e e

LANGUAGE (spoken and written} is central to all aspects
of our communication. Therefore natural language pro-
cessing systerns (NLP), both current and future, are
bound to play a crucial role in our communication with
machines and even among ourselves. NLP systems
inciude systems for speech recognition, language
understanding and language generation. Spoken language
systems are those that integrate speech and language
systems. Such systems will provide, and to some extent
already do so, an interface to databases and knowledge
bases, for example, an airline information and
reservation system, expert systems for scheduling,
planning, and maintenance, among others. Text
processing and message understanding systems are
useful for extracting information from texts and
formatting it in a varnety of ways for further use.
Language communication often occurs m two or more
languages. Muitilingual NLP has applications to a
variety of multilingual tasks such as providing aids for
translating foreign language correspondence, translating
equipment manuals, and speech-to-speech translation in
limited domains, among others, Finally, natural
language in conjunction with graphic/animation moda-
lity provides very uscful cooperative interfaces, especially
in the instructional domains.

NLP jis concerned with (1) the study of mathematical
and computational models of the structure and function
of language, its use, and 1ts acquisition and (ii) the
design, development, and implementation of a wide
range of systems as mentioned above. On the theoreti-
cal side, the study involves mathematical and compu-
tational modeling of syntax, semantics, pragmatics (that
15, certain aspects of the relationship of the speaker and
the hearer, or user and the system in the case of an
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NLP system), and discourse aspects of language. These
investigations are interdisciplinary and involve concepts
In computer science including artificial intelligence,
linguistics, logic, and psychology.

I cannot, obviously, survey the entire field of NLP in
this limited space. 1 will not even provide a compre-
hensive survey of the three selected areas. My goal is to
provide a short introduction (based on examples) to
these three topics and justify the significance of the
1ssues involved. I have provided the major references to
these three topics, as well as to some other key topics
not discussed here at all.

Many major topics have been omitted, all of which
are very important to NLP. I have not discussed speech
recognition and synthesis at all, and in the language
arca, [ have not discussed many aspects of discourse
structure, which are crucial to natural language under-
standing and generation and their applications to
cooperative interfaces’. I have also not discussed the
very important area of machine translation.

Grammars and parsers

Language has a hierarchical structure at various levels,
in partictular at the sentence level, which is the level we
will be concerned with in this section. Almost every
NLP system has a grammar and an associated parser.
A grammar is a finite specification of a potentially
infinite number of sentences, and a parser for the
grammar is an algorithm that analyses a sentence and
assigns one or more structural descriptions to the
sentence according to the grammar, if the sentence can
be characterized by the grammar. A structural
description is a record of the derivational history of the
sentence according to the grammar, The structural
descriptions are necessary for further processing, for
example, for semantic interpretation, Chomshy's? work
on formal grammars tn the late fiftics was the beginning
of the tnvestigations of mathematical and computational
modeling of grammars. He introduced o hierarchy of
grammars (finite state grammars, context-free gramumars,
context-sensttive grammars, and unrestricted rewnting
systems) and 1nvestigated their finguitic adequacy.
Many NLP systems are based on  context-free
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grammers (CFGs). We will briefly describe CFGs. A
CFG, G, consists of a finite set of non-terminals (for
example, S sentence; NP noun phrase; V: verb, ADV:
adverb), a finite set of terminals (for example, Harry,
peanuts, likes, passionately), and a finite set ol rewnte
rules of the form A— IV, where A is a non-terminal and
B 1s a string of zero or more non-terminals and
terminals. § 1s a special non-terminal called the start
symbol. In Figure 1 we have a simple example of a
CFG. The rewrite ruies in the left column are called
syntactic rules and the rules in the right column are
called lexical rules, as these rules rewrite a non-terminal
into termunals or lexical items. A derivation in a
grammar begins with §, the start symbol. S is rewritten
as a string of non-terminals and terminals, using 2z
rewrnite rule applicable to S. The new non-terminals are
then rewritten according to the rewrite rules apphicable
to them, until no lurther rules can be applied. It 13 ¢asy
to see that the sentence Harry likes peanuts passionately
can be generated by the grammar. In Figure 1, the
tree shows the structural description assigned by
the grammar to the sentence spelled out by the
lexical items appearing at the frontier nodes of the tree.
Here the derivation starts with the start symbol S. This
symbol is then rewritten as the string NP VP, These
two symbols are now rewritten {(in any order) as the
stnings Harry and VP ADY respectively. The symbol VP

A Context-Free Grammar (CFG)

Syntactic Rules Lezical Rules

5 - NP VP NP — Harry
VP - VP ADV NP — peanuts
VP — V NP V — likes

ADV — passionately

Structural description assigned to the sentence:
Harry Likes peanuts passionately

S

/\

NP VP

| TN

Harry VP ADY

N |

v NP passionately

|

likes peanyts

Figure |. A context-lree grammar.
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is rewritten as the string V NP and ADY is rewritten as
passionately, Finally, V is rewritten as likes and NP is
rewritien as peanuts. The tree in Figure 1 is the result of
these rewritings.

A finite-state grammar is like a CFG, except that the
rewrite rules are of the form A—aB or A—q, where A
and B are non-terminals and a i1s a terminal symbol.
Finite-state grammars have been shown to be inade-
quate for modeling natural language structure. This is
because there are dependencies that hold at unbounded
distances. Some examples are given below (see for
example the filler-gap dependencies described in the
section on Mildly Context-Sensitive Grammars: see also
the section on Statistical Approaches to Natural
Language). A context-sensitive grammar is also like a
CFQG, except that the rewnting of @ non-terminal is
dependent on the context surrounding the non-
termmal, unlike the rewrite rules in CFG where the
rewriting is context-independent. Context-sensitive gra-
mmars appear to be adequate for describing natural
language structures. However, the entire class of
context-sensttive grammars appears to be too powerful
in the sense that it is not constrained enough to
characterize just the structures that arise in natural
language.

CFGs, as defined above, are inadequate for a variety of
reasons and need to be augmented. The two main
reasons are as follows: (i} The information associated
with a phrase (a string of terminals) is not just the
atomic symbols used as non-terminals. A complex
bundie of information (sets of attribute-valye pairs,
called feature structures}) has to be associated with
strings, the syntactic category of the phrase being only
one such feature, for example. Appropriate structures and
operations for combining them are needed together
with a CFG skeleton; (i) The string combining
operation 1n a CFG is concatenation, that is, if u and v
are strings, v concatenated with u gives the string
w=uv, that 15, u followed by ». More complex string
combining as well as tree combining operations are
needed to describe various linguistic phenomena. I will
illustrate these two kinds of augmentations by some
simple examples.

CFG-based unification grammars

A feature structure consists of a set of attribute-value
pairs, where a value may be atomic or may be another
feature structure, In Figure 2, the feature structure X,
consists of a feature cat {(category) whose value is NP
and a feature head whose value is another feature
structure. This feature structure has only one attribute,
agreement, whose value is another feature structure with
attributes number and person with values singular and
third tespectively. X, is a feature structure that can be
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~cat: NP
X1: _ | rumber : singular
head : agreement [ person ! thilgd ]
- cal vP
[ {orm : finite
X; .
head : : . 8l
€a subject : agreement : ;::‘;{EET: ﬂﬂﬁdar ]
L
XD — -Xl .Xg
 cat ¢ S
KXo ) head : (value is the same as the value
of the head feature of X;)

Figure 2. CFG-based unification grammar.

appropnately associated with the phrase Fido because
Fido is a noun-phrase NP whose number is singular
and it 1s a third person noun-phrase. Similarly X, is a
feature structure that can be appropriately associated
with the phrase snores because snores 1s a verb with a
tense {present), 1.e. 1t 18 a finite verb and requires a
subject that i1s singular and in the third person. The
context-free rewnting rule X,—X,X, can be inter-
preted as an instruction for combining the strings Fido
and snores to give the string Fido snores and building
the feature X, to be associated with 1t, as shown in
Figure 2. This httle example illustrates the main idea
behind CFG-based unification grammars>.

The main operation for combining feature structures
is called unification. Given two feature structures 4 and
B, we get a new feature structure C by unifying A and
B, which has all the information in A and all the
information in B and no more. Of course, if A and B
have contradictory information, then A and B will [ail
to unify. In a CFG-based unification grammar, the
CFG {context-free grammar) serves as a skeleton which
defines the string combining operations. The objects
that the grammar manipulates are feature structures.
The feature structures are combined by the operation of
unification as explained above. Thus in this type of
unification grammar the grammar builds the string and
the unifications of the approprnate feature structurcs
(beginning with the feature structures associated with
the lexical items, i.e. the words) build a fecature structure
associated with the string built by the grammar.

A varicty of grammars such as generalized phrase
structure prammar (GPSG)*, head driven phrase
structure grammar (HPSG)* and lexical functional
grammar (LFG)® are essentially based on CFG-based
unification grammars. An introduction to unification-
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based grammars appears in ref. 3. Unification 15 a very
powerful operation and, unless restricted, CFG-based
unification grammars are Turing Machine equivalent,
that is, their computing power equals the power of a
general-purpose computing machine with unlimited
working tape. From a linguistic point of view, these
grammars have to be restricted so that their descriptive
power 18 no more than necessary, and from a
computational point of view, they have to be restricted
in order to yield efficient parsing algorithms’. Both
these considerations form the basis for continued
research in this area.

Mildly context-sensitive grammars

In any mathematical or computational grammar, a
wide range of dependencies among the different
elements 1n the grammar have to be described. Some
examples of these dependencies are as follows: (i)
Agreement features such as person, number, and
gender. For example, in English, the verb agrees with
the subject in person and number; (1) Verb subcate-
gorization, 1n which each verb specifies one {or more)
subcategorization frames for their complements. For
instance, sleep does not require any complement, {(as in
Harry sleeps), like requires on¢ complement {as in
Harry likes peanuts), give requires two complements (as
In Harry gives Susan a flower), and so forth; (iii)
Sometimes the dependent elements do not appear in
their normal positions. In

Who, did John invite e,

where ¢; is a stand-in for who;, who; is the filler for the
gap ¢;. The filler and the gap neced not be at a fixed
distance. Thus in whe, did Bill ask John to invite e;, the
filler and the gap are more distant than in the previous
sentence; (iv) Sometimes the dependencies are nested. In
German, for example, one could have

Hans; Peter; Marie, schwimmen, lassen; sah,
{Hans saw Pcter make Maric swim)

where the nouns (arguments) and verbs are in nested
order, as the subscnipts indicate; (v) However, in Dutch,
these dependencies are crossed, as for exampile, in

Jan; Piet; Marie, zay, laten; zwemmen
(Jan saw DPiet make Marig swim).

There are, of course, situations where the dependencies
have more complex patterns. Precise statements of such
dependencies and the domuains over which they operate
constitute the major activity n the specification of g
grammuar, Mathematical and computational modeling
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of these dependencies is one of the key areas in natural
language processing. Many of these dependencies (for
example, the crossed dependencies discussed above)
cannot be described by context-free grammars® ~19.
This is easily seen from the well-known fact that CFGs
are equtvalent to the so-cailed push-down automata
(PDAs) which have the storage discipline—Ilast in first
out. PDAs therefore can characterize nested dependen-
cies.

In the context-free grammar (CFG) in Figure | the
dependency between a verb (likes) and its two
arpuments [subject (NP) and object (NP)], is specified
by means of two rules of the grammar. It is not possible
to specify this dependency in a single rule without
giving up the VP (verb phrase) node in the structure.
That is, if we introduce a rule, S>NP V NP, then we
can express the dependency in one rule, but then we
cannot have VP in our grammar. Hence, if we regard
each rule of a CFGQG as specilying the domain of locality,
then the domain of locality for a CFG cannot locally
(that 1s, In one rule) encode the dependency between a
verb and 1its arguments, and still keep the VP node in
the grammar.

We will now describe briefly two grammars whose
domain of locality 1s larger than that of a CFG.

In the tree-adjoining grammar (TAG) in Figure 3a,
each word 1s associated with a structure (tree) (the word
serves as an anchor for the tree) which encodes the
dependencies between this word and its arguments {(and
therefore indirectly its dependency on other words

which are anchors for structures that will fill up the
siots of the arguments). Thus for fikes, the associated
tree encodes the arguments of {tkes (that is, the two NP
nodes in the tree for likes) and also provides slots in the
structure where they would fit. The trees for Harry and
peanuts can be substituted respectively in the sujbect
and object slots of the tree for lLikes. The tree for
passionately can be 1userted (adjoined) into the tree for
likes at the VP node. The derivation in a TAG
grammar 18 quite different from the derivation in a
CFG. The tree in Figure 34 is a derived tree in the
TAG shown in the figure. It is not the derivation tree.
The denivation tree (for the denved tree shown in
Figure 3a) will be a record of the history of the
various adjoinings and substitutions carried to
produce the tree i Figure 34. This derivation tree
is not shown In Figure 3a. In a TAG, the entire
grammar consists of lexical items and their associated
structures. There are universal operations, substitution
and adjoining which describe how structures can be
combined!! 13,

In the combinatory categorical grammar (CCG) in
Figure 3b, each word is assigned a category, atomic or
composite. The category for Harry and peanuts is NP,
an atomic category. For [likes, the category is
(S\NP})/NP. This expression encodes the information
that likes has two arguments. The category can be
interpreted as a function, which when applied to an
argument NP {the object) on the right, returns (S\NP),
which is also a function. This function, when applied in

a. Tree Adjoining Grammar (TAG)

Lexical Trees

S

NPL VP NP NP
YV NP

likes

Harry peanuts

/N

- Operations

(1} Substitution (for nodes
marked with |)

Adjoining

ADY

| (2)

passionately

b. Combinatory Categorial Grammars (CCQG)

Lezical Categories

likes: (S\NP)/NP (composite)

Harry: NP (atomic), S/(S\NP) (composite)

peanuts: NP (atomic)

Operations

(1) function application

(2) function composition

passiopately: (S\NP)\{5\NP) (composite)

Figure 3. Two grammar formalisms with domains of locality larger than the domain of locality for CFG.
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turn to an argument NP (the subject) on the left,
returns S (sentence). In this representation, (S\NP)
serves the same role as VP. In a CCG, the entire
grammar consists of lexical items and their category
assignments. There are two universal operations,
function application .and function composition, which
describe how categories are combined. Note that
passionately is combined with likes peanuts by function
composition. CCG  also allows ftype raising. For
example, Harry has the category NP, but we can also
assign another category to Harry, namely S/(S\NP),
that is, a function requiring a verb-phrase on the right
and returning S. This category assignment is appropriate
only if Harry is in the subject position'4-!3, Derivation

it a CCG is the history of how a string is built by the
successive use of the function application and compo-
sition operations. This history can be represented as a
tree, not shown in Figure 3b. A CCG does not
necessarily assign a unique phrase structure. The
structure depends on the operations used and the order
in which they were used. Different choices of operations
and different orders of use will result in different phrase
structure descriptions, even for unambiguous sentences.

Both CCG and TAG have domains of locality that
are larger than that for CFG, because in each case all
the arguments of the verb likes are encoded in
structures associated with the verb and yet, the node
VP (=S\NP in CCQj is available. The larger domain of
locality allows TAG to completely factor out recursion
from the domain of dependencies, thus localizing all
dependencies in the elementary trees'?, For the
hinguistic significance of CCG and TAG, see refs.
14,15,16-18.

TAG and CCG are very similar. In fact, they have
been shown to be formally equivalent (with respect to
their weak generative capacity, that is, the sets of
sentences they generate). They are more powerful than
CFG and belong to a class of grammars that we call
mildly context-sensitive grammars (MCSG)'®. This
class preserves many of the essential properties of CFG
and yet is able to provide enough power to capture a
wide range of dependencies of language structure, such
as the crossed dependencies we discussed earlier.
Several other recent formahsms, for example, Linear
Indexed Grammar and Head Grammar, have also been
shown to be equivalent to TAGs'?7*'. This equivalence
of a number of linguistically motivated grammars based
on quite distinct insights into the structure of language
has led to the search for invanances across this class of
grammats, these invariances being more important in
some sense than the individual grammars'®, The study
of mildly context-sensitive grammars and the study of
their equivalences 1s one of the most active areas of
investigation in mathematical linguistics during the last
decade.
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We have been implicitly assuming that a grammar
assigns a unique structure to a sentence {assuming that
the sentence is unambiguous). Thus for example Harry
likes peanuts will be bracketed as follows (ignoring the
phrase labels and ignoring some brackets not essential
for our present purpose):

(a) (Harry (hikes peanuts))

It 1s possible 1n a CCG to assign multiple structures to
unambiguous sentences'®, as we have pointed -out
above. Thus CCG assigns the following two groupings
to Harry likes peanuts:

(b) (Harry {likes peanuts))
(¢) ((Harry likes) peanuts)

The justification for such multiple structures is their
us¢ in coordinations (for example, with and)} and in
defining intonational phrases. Thus the bracketing (b} is
necessary for {d) and the bracketing {c) for (e).

(d) (Harry ((likes peanuts) and (hates cashews)))
(e} (((Harry likes) and (Bill hates)) cashews)

Also, (b} corresponds to the intonational phrasing if
the previous context is (f} and (¢} If the previous context

is (g).

(f} Who likes peanuts? (Harry {likes peanuts))
(g) What doe¢s Harry like? ({(Harry likes) peanuts)

The flexibility in the assignment of structure is
achieved by giving up the notion of a canonical
structure. Thus in Figure 3b, if Harry i1s assigned the
category S/(S\NP), it can either combine with likes by
function composition giving the structure in (¢} above,
or it can apply to the predicate likes peanuts to yield (b)
above'®, However, it is not necessary to give up the
notion of canonical structure. It is possible to maintain
a fixed structure at a certain level (at the level of
elementary trees in a TAG, for example) and still
achieve the kind of flexibility needed for examples
shown above!?. Similar results can be obtained in the
Head-Driven Phrase Structure Grammar {HPSG)
[ramework.

Parsing complexity

A parser for a grammar is an algorithm that assigns to
a sentence ong or more structural  descriptions
according to the grammar, if the sentence is generable
by the grammar. Parsing of sentences according to
different prammars and the complexity of this process
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are tmportant rescarch areas in NLP. For a CFG a
number of parsing aigorithms are known and the time
required to parse a sentence of length n is at most Kn’,
where K depends on the size of the grammar. This
result extends to almost all CFG-based grammars used
in NLP. The constant K can become very large
however. In practice, of course, the worst case
complexity Is really not the important measure. Most
parsers perform much better than the worst case on
typical sentences. There are no mathematical results, as
yet, to characterize the behaviour on typical sentences.
Grammars that are more powerful than CFG are, of
course. harder to parse, as far as the worst case is
concerned. The grammars in the class of Mildly
Context-Sensitive Grammars discussed earlier can all
be parsed in polynomial time just as CEFG, however, the
exponent for n 1s 6 instead of 3.

A crucial problem in parsing is not just to get all
possible parses for a sentence but to rank the parses
according to some criteria. If a grammar is combined
with statistical information (see next section), then that
information can be used to provide this ranking. This 1s
exactly what is done in many spoken language systems,
that is systems that integrate speech recognition and
language processing??2,

In our discussion so far, we have been assuming that
the parser only handles complete sentences and the
parser either succeeds in finding the parse(s) for a
sentence or it fails. In practice, we want the parser to
be flexible—that is, it should be able to handle
fragments of sentences —and it should fail gracefully —
that is, it should provide as much analysis as possible
for as many fragments of the sentence as possible, even
if it canpot glue all the pieces together. A parser with
such properties based on the idea of deterministic
parsing?® has been described in ref. 24 and used in the

construction of a large corpus of parsed text, a tree
bank?3,

rich

So: initial state

Finally, the actual grammars 1in major NLP systems
are large, but even with this large size their coverage is
not adequate. Building the grammar by hand soon
reaches its limit and there is no guarantee that it will be
increasingly better in coping with free text (say, text
from a newspaper) by continuing to build it manually.
Increasing attention is being paid now to automatically
acquiring grammars from a large corpus?®. See the
following section for further details,

Statistical approaches to natural language processing

There is a long history of modeling language
statistically. After all, some words occur more
frequently than other words (for example, the occurs
more frequently than man, which occurs more
frequently than aardvark), some two-word sequences
appear more frequently than some other two-word
sequences (for example, @ man occurs more {requently
than old man, which occurs more {requently than green
man), and so forth. Hence, it i1s reasonable to believe
that [anguage can be modeled statistically. A specific
proposal along these lines was made by Shannon?® in
1948. He viewed the generation process as modeled by sto-
chastic processes, in particular, a Markov process. For our
present purpose, we will characterize sentence generation
by a finite state machine (Figure 4). Given a state diagram,
we generate a sentence by starting with the initial state
and then traversing the diagram from state to state and
emitting the word labeling the arc between a pair of
states. The process ends when we reach the final state.
A probability is assigned to each state transition
together with the emitted symbol, that is to a triple (S,
a,, 5;) representing the transition from state S, to state
S, emitting the symbol a,. Although such machines are
clearly relevant to modeling language statistically,
Chomsky*’ rejected the finite state machine charac-
terization as inappropriate for modeling grammars, for

Sg: final state

Figure 4. A finite slale machine generaling sentences.
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the following reason: In Figure 4, lives is four words
away from man, assuming that we did not follow the
loop at S,. Hence the dependency between these two
words can be captured by the state sequence from $; to
S¢. However, in the sentence The man who the woman
Harry met yesterday telephoned lives in Philadelphia,
(one that 1s a bit difficult to process but grammatical,
and not generable by the machine in Figure 4), lives 1s
now seven words away from man. Since more clauses
can be embedded and each clause can be lengthened by
adding adjectives or adverbs, the distance between lives
and man can be made arbatrarily large and thus the
number of states required to model language cannot be
bounded. Hence a finite state machine 15 inadequate.
Chomsky also rejected the possibility of assoctating the
probability of a sentence with its grammaticality (the
higher the probability, the higher the grammaticality of
the sentence). This 1s because if we order the sequence
of a given length (there will be W™ such sequences, f W
is the number of words and » is the length of the
sequences) according to the probabilities of the
sequences then it will not be possible to sort out
grammatical and ungrammatical sequences on the basis
of this ranking??. Chomsky then developed structural
models, such as the phrase structure grammar and
transformational grammar, which formed the basis for
almost all of the work in mathematical and compu-
tational linguistics up until the present.

Although Chomsky rejected the statistical models, he
commented?’ ‘Given the grammar of language, one can
study the use of the language statistically in various
ways; and the development of probabilistic models for
the use of language (as distinct from the syntactic
structure of language) can be rewarding... One might
seek to develop a more claborate relation between
statistical and syntactic structure than the simple order
of approximation model we have rejected. I would
certainly not care to argue that any such relation is
unthinkable, but I know of no suggestion to this effect
that does not have obvious flaws. ...

Harris?® around 1957, proposed a transformational
theory motivated by the considerations of normalizing
sentence structures (for the purpose of discourse
analysis) so that the relevant co-occurrences among
words can be stated in a local manner. Very roughly
speaking, under this view, The man who Harry met
yesterday lives in Philadelphia, is made up of SI: The man
lives in Philadelphia and S2: who Harry met (which is a
transformed version of 83: Harry met the man, with S1
and S3 shaning the man) and so on. There are
clearly ‘meaningful’ statistical dependencies between
lives and the subject noun man and the object of in,
namely, Philadelphia, and between met and [larry, the
subject of met, and man the object of mer, but not
‘meaningful’ statistical dependencies between lives and
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yesterday or met yesterday (the one-word and two-word
sequences before lives) and so on.

Although statistical approaches did not play a
significant role in mathematical or computational
linguistics, it is clear that the idea of somehow
combining structural and statistical information was
already suggested as early as the late fifties. Now in the
nineties, we see a resurgence of these early ideas. There
are two key reasons for this renewed interest. First, we
now have some formal frameworks which appear to be
suitable for combining structural and statistical inform-
ation in a principled manner and second, there is now
the possibility of using very large corpora, annotated in
various ways, that can be used for reliably estimating
the various statistics needed to deduce linguistic
structure?’.

Hidden Markov Models (HMM) have played a
crucial role in speech recognition. HMMs are derived
from the theory of probabilistic functions of finite state
Markov chains?®3%, HMMs were introduced in the
speech recognition domain in the early eighties and
became very popular in the late eighties. They have also
found use in the spoken language systems, i.€. systems
that integrate speech and natural language. As we have
already pointed out finite state models are not adequate
for modehng the structure of natural language; more
powerful medels such as context-free grammars and
beyond are needed. The parameter estimation tech-
niques for HMMs have been extended to these more
powerful models also 3! 733,

We will first give a brief descniption of the HMMs
based on ref. 30. In a finite state model the state
sequence can be determined (ie. it is visible} from the
sequence of the letters that are emitted when a state
transition takes place. The letter sequence 1s observable.

"“Thus from the observed sequence the state sequence

can be determined. In contrast, in an HMM, in each
state transition, a particular letter will be emitted
according to some probability density function. Thus
the state sequence cannot be unambiguously deter-
mined from the letter sequence, 1.e. the state sequence 1s
hidden, and hence the name HMM.

In order to use the HMMs first the model has to be
trained, 1.e. the parameters of the model have to be
estimated using a set of training data. The training
consists of first aligning the training data to the model
and then reestimating the parameters of the model. This
mcthod is called the forward-backward (or Baum-
Welsh) method. A simple description of this method
and how HMMs are usced in speech recognition appear
in ref. 30.

HMMs are equivalent to finite state (stochastic)
grammars (regulap grammars). Finite state grammars
are not adequate to mode] certain aspects of language,
in particular the recursive aspects, as described earlier.
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Hence, it is useful to consider more powerful grammars
such as context-fre¢ grammars, i.e. consider stochastic
context-free grammars. The forward-backward algori-
thm for training HMMs can be extended to stochastic
context-free grammars®*~*3, In this case, it is often
referred to as the inside-outside algorithm. We assume
that the context-free grammar is in the Chomsky
normal form, ie. the rules of the grammar are of the
form

A-BC

A—-a

where 4, B, and C are nonterminals in the grammar
and a 1s a terminal symbol. Let w=a,,a,,---,q, be the
string of words {observation sequence). Training this
model consists of determining a set of grammar rules
given a tramning set of sentences (strings of words),
Wy, W,, -, W,. Instead of computing the forward and
backward probabilities as in the case of HMMs, we
compute inside and outside probabilities. Yery roughly
the inside probability is a computation that proceeds
from bottom to top in the derivation tree and the
outside probability computation proceeds from top
down mn the derivation of a string. For a simple
description of this algorithm and its use in the
reestimation of the parameters (the probabilities
associated with the rules), see refs. 31-33.

More recently, a similar inside-outside algorithm for
reestimation has been designed and implemented for
the tree adjoining grammars?*, Unlike the reestimation
algorithm for HMMs, whose complexity of compu-
tation 1s O (n), where n 1s the length of the input string
(observation sequence), the complexities of the reesti-
mation algortithms for the context-free grammars and
tree adjoining grammars are O(n?) and O(n®) res-
pectively. This increased complexity has not made these
models applicable in practice yet. However, research is
currently under way to make the computations more
efficient®?.

We will now give a few examples to show how
structural and statistical information can be integrated.
Context-free grammars (CFG) have been used exten-
sively in modeling grammars. Each rule (production) in
a CFG can be associated with a probability of its use.
Thus, given a CFG with rules: (R1)S—-»NPVP (0.9),
(R2)S->NP NP V (0.1), (R3) VPV NP (0.7), (R4) VP>
V (0.3), we have associated probabilities with each of
the rules. The probabilities of all rules associated with a
given non-terminal add up to 1. The probability of a
sentence (more precisely the derivation of the sentence
in the grammar} is simply the product of the
probabilities of each rule in the derivation because the
grammar is CFG and the application of a rule depends
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only on the non-terminal on the left hand side of a rule
and not on the context in which this non-terminal
appears in a derivation. Probabilistic parsing methods
and methods for estimating the probabilities of the
rules from a training corpus are given in refs. 31-34, By
making the probability associated with each rule
somewhat context-dependent, for example, making it
dependent on the preceding rule in the derivation,
considerable improvement in the estimation of the
probabilities and performance of the parser (in terms of
getting correct parsers) can be achieved?’,

As we have seen earlier, the really ‘meaningful’
statistical dependencies are between words (lexical
items) mediated most likely by grammatical relations.
For example, there will be ‘meaningful’ statistical
dependencies between the verb eats, and the lexical
items that can appear as subject and object of eats.
CFGs and their generalizations are not directly based
on lexical items, that 1s, they are not, and in general,
cannot be lexicalized'?. Lexicalized grammars, as
described earlier, are more appropriate for integrating
structural and statistical information in a uniform
manner.

Two dependent words in a sentence can be at an
arbitrary distance apart, as we have seen earlier. Hence,
this dependency cannot be captured by one-word, two-
word, three-word and n-word frequencies, for some
fixed n (that is, uni-gram, bi-gram, tri-gram and n-gram
statistics). However, in many situations these statistics
work surprisingly well in determining some aspects of
language structure. Tri-gram f{requencies (of parts of
speech —that i1s, syntactic categories—and not words
directly) have been used very successfully for discover-
Ing an optimum assignment of parts of speech to
words’®?7. Almost all words are lexically ambiguous,
that 1s they belong to more than one category. For
example, table is either a noun (N) or a verb {V); pale is
either an adjective (ADJ) or an adverb (ADV); see can
be a verb (V), an interjection (UM), or a noun (with
capital S); round can be an adjective (ADJ), noun (N),
verb (V), or an adverb (ADYV), and so forth. The
program n ref. 36 uses a linear time dynamic
programming algorithm to find an assignment of parts
of speech optimizing the product of: (i) probability of
observing a part of speech i, given the word j, and (ii)
probability of observing part of speech i, given two
previous parts of speech. Probability estimates are
obtained by training on a tagged corpus (such as the
well-known Tagged Brown Corpus?®®). Error rates of
only 3% to 4% have been reported®®, which compare
very well with the error-rate of human annotators.
Similar techniques have been used to locate simple
noun phrases with high accuracy?3®,

Statistical techniques in conjunction with large
corpora (raw texts or annotated in various ways) have
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also been used to automatically acquire other linguistic
information such as morphological information (that is,
parts of words such as prefixes and suffixes and
inflected forms), subcategorization information (sce the
earher section on grammars and parsers for subcate-
gorization information), semantic classes (such as
classification of nouns, based on what predicates they
go with; compound nouns such as jet engines, stock
market prices; classification of verbs, for example, to
know describes a state of the world, while to look
descnibes events and so on), and, of course, grammatical
structure itself as we have already mentioned35-3°743,
Such results have opened up a new direction of research
in NLP, which is often described as corpus-based
NLP.

It should be clear from the previous discussion that,
for the development of corpus-based NLP, very large
quantities of data are required (the Brown Corpus from
the sixties 1s about 1 million words). Researchers
estimate that about 100 mllion words will be required
for some tasks. The technologies that will benefit from
corpus-based NLP include speech recogmition and
synthesis, machine translation, full-text information
retricval, and message understanding, among others.
The need for establishing very large text and speech
databases, annotated in various ways i1s now well
understood. It is recognized that no single organization
can afford to create enough hnguistic data even for its
own research and development, let alone for the needs
of the research community at large. This need, together
with the size of the database and the need for sharing it,
has been the key motivation for the plans for setting up
a Linguistic Data Consortium (LDC) by DARPA%4,
Initial plans of the LDC call for the collection of raw
text {maturally occurring text from a wide range of
sources, 5 to 10 billion words), annotated text (syntactic
and semantic labeling of some parts of raw text,
upwards of 20 million words); raw speech (spontaneous
speech from a variety of interactive tasks, 400 hours,
2000 speakers); read speech (1000 hours, 10,000
speakers); annotated spech (phonetic and prosodic
labeling, 20 hours); a lexicon (a computational
dictionary of 200,000 entries plus a term bank
containing, for example, geographical, individual, and
organizational names, 200 to 300 thousand entrics); and
a broad coverage computational grammar, The LDC
will also develop a variety of sharable tools. Some
examples in the speech area are: programs for
segmentation of speech, alignment of speech and text,
prediction of pronunciation options from orthographic
transcription. Some examples from text are: a program
for breaking text into sentences, a statistical parts-of-
speech tagger, an efficient program for computing n-
gram statistics and a vanety of other statistics over very
large corpora®?,
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Integration of language and graphic/animation
modalities

In this section®, I will describe a system that integrates
language and graphics/animation modalities in the
context of following task Instructions in a changing (but
hospitable} environment. This system {called AnimNL:
Animation from Natural Language} has been developed
by Badler and Webber and their associates at the
University of Pennsylvania.

This work bwuilds on the premise that agents rarely
know everything they need to: they may not know
exactly how to do things or what will happen when they
attempt to do them. Instructions can help with both.
The question is how agents can interact systematically
with environments about which they have only partial
relevant knowledge. The solution adopted in AnimNL
is to enable agents, faced with incomplete knowledge, to

O develop expectations through instruction under-
standing and plan inference, and use those
expectations, for example, in deciding how to act;

© exploit gencralized abilities in order to deal with
novel geometric situations,

The AnimNL system has as its goal the automatic
creation of animated task simulations {rom natural-
language instructions. The agents participating in these
task simulations are animated human figures. AnimNL
is intended to support advanced human factors analysis
in what has come to be called virtual prototyping,
enabling users of computer-aided design tools to
simulate people’s interactions with the artifacts they are
designing and thereby to notice design flaws that might
otherwise only become apparent after the artifacts enter
the workplace.

In this system we assume that agents and artifacts are
in fairly ‘hospitable’ environments —that is, ones that
don’t change drastically from moment to moment
outside the agent’s control. The point is to see if and
how a task can be carried out with everything going
hne. However, even in hospitable environments,
classical planning techniques are insufficient for agents
with Iimited knowledge. An agent cannot know what is
in a closed, opaque box until he opens it, or what is
necded to open a door until he knows what kind of
door 1t is and if and how it is locked. or how many
chopping motions he will need to chop an onion until

l—m e

*Thiy scction s entirely hased on several sections {edited for the
currend purpose) of 4 dhaft verston of 4 paper by Bonme Webber et al.
(1991, Dong What You're Toll Following Tash Insiructoon ia

Changung, but Hospuable Lncwonments, Techawal Report, Depart-
mentl of Computer and Information Science, Urisersity of Pennayl-
vanu, 1992
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he sees that it is chopped enough for current purposes.
Agents cannot, 1n general, know all that will be needed
to complete a job until the job is complete.

The AmimNL system builds on an animation system,
Jack™, {developed at the Computer Graphics Research
Lab at the University of Pennsylvania). Jack provides
articulated, animated human figures capable of reahistic
motion through model-based behaviors. In addition,
Jack agents can be anthropometrically sized and given
different ‘strengths’, so as to vary their physical
capabilities. Different spatial environments can be
constructed and modified at wiil, so as to vary the
situations in which tasks are carried out. Such flexibility
enables designers to explore a wide range of usage
situations.

The AnimNL system addresses the problem of how to
map from high-level task specifications (specifying a
structure of related goals to be achieved and
constraints—positive and negative—on how to achieve
them) to plausible physical behaviors performed veridi-
cally. Generating and animating the behavior of highly
articulated agents carrying out tasks in a physically
veridical manner, 1n an environment about which they
have only partial knowledge, raises a number of
problems that have not received serious consideration
in planning research or in robotics, although the
solutions in Ammation draw upon important recent
work in Natural Language semantics*®, planning and
plan inference®® =43, philosophical studies of intention*®,
reasoning about knowledge and action®®*! and
subsumption architectures for autonomous agents.

{ntentions as a factor in behavior

While AnimNL demonstrates agents’ use of expectations
and generalized abilities to deal with an environment
they can know only partially, these are not the only
factors influencing their behavior. In order to get agents
to behave veridically, it is necessary to push notions of
intention down from the highest cognitive level, to
levels of basic movement,

Consider the following situation: An agent is in a
house, In a room known to be adjacent 1o the kitchen.
The door between the two rooms is closed. The agent is
given the instruction ‘Go into the kitchen to get me the
coflee urn’. This instruction leads the agent to adopt
intentions of going to the door to the kitchen and
opening it. What is important 1s that the system cannot
make low-level decisions about how the agent should
move n doing either, without taking into account their
intentions: they have implications concerning how close
to get to the door, where to stand with respect to the
door, and how wide the door should be opened.

Intention has been identified as a modulating factor
in rational behavior by various researchers (e.g., refs.
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48,49,52). However, the role of intentions in interpreting
instructions has not yet been fully explored. Chapman®?
does stress that an instruction such as ‘use the knife’
can only be carried out after it has been interpreted in
terms of the situation at hand. However, for Chapman,
intentions are not purposes that an agent adopts, but
rather features of the current situation that make a
particular course of action sensible: in the context of
Chapman’s videco-game, a knife could be used either to
kill a monster or to jimmy a door. The situation itself—
e.g. a monster 1S threatening the agent-—will make
ciear what actions are sensible and determine the ‘right’
sense of ‘use the knife’. Such a grounding of action in
performance, and therefore acting in ways that make
sense in a certain situation, is also embodied in
AnimNL. However, the notion of intention has been
generalized to cover the purposes that agents actively
invoke while acting or planning to act.

Overview of AnimNL

The AnimNL system architecture reflects what has been
found to be necessary to enable an agent to understand
and act in accordance with purposeful instructions and
to enable an animation system to simulate and animate
that behavior. The architecture consists of two
relatively independent kinds of processes. The first kind
produces commitments to purposeful activity, which we
call annotated task actions—for example,

@ goto(doorl, open (doorl})—‘go to doorl for the
purpose of opening it’

® prasp(urnl, carry(urni))~‘grasp urnl for the
purpose of carrying 1t’.

The second kind of process determines how the agent
should move 1n order to fulfil these commitments. What
we will describe here is how instructions lead to initial
commitments to act and how actions once embarked
upon allow further commitments to be made and acted
On.

Instructions are given to AnimNL in steps consisting
of one or more ufterances. Such multiclause instruction
steps are¢ common in maintenance and assembly
instructions — for example,

*With door opened, adjust switch until roller contacts
cam and continuity 1s indicated at pins A and B.
Verify positive switch contact by tightening bottom
nut one additional turn’. (Air Force manual T.O. IF-
16C-2- 941G-50-2, p. 5-24)

While there are no firm guidelines as to what a single
instruction step should encompass, often steps are
orgamized around small coherent sub-tasks (such’ as
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adjusting a switch). Such a step may specify several
actions that need to be performed together (possibly in
some partially specified order) 1o accomplish a single
subtask, or several aspects of a single complex action
(e.g. its purpose, manner, things to watch out for,
appropriate termination conditions, etc.). The agent
must develop some degree of understanding of the
whole step before starting to act.

A ‘step’, for AnimNL, not only defines a subtask, but
also specifies behavior that the agent must attend to
continuously: while carrying out a step, attention must
be maintained on the task at hand. The agent cannot
stop until he fimishes or hits a snag tn the current step,
In other words, a step defines the sequence of the
instructions that must be processed as a whole€, before
the agent begins t0 act on them. The “example
instruction step that we will focus on and illustrate in
this article is ‘Go 1nto the kitchen to get me the coffee
urn’. While it contains only two clauses, it does
illustrate a surprisingly large number of interesting
points.

Steps are processed by a natural language parser to
produce an action representation based on Jackendofl's
Conceptual Structures®. For ¢xample, from the input
instruction ‘Get me the coffee urn’, the parser produces:

[CAUSE(i, [GOy, ([URN-OF-COFFEE],. k) 1) 14

FROM([AT(j)])
TO (me)

This can be glossed as the agent causing the coffee urn to
go from where it IS now to where the speaker is,

One reason for using Jackendoffs Conceptual
Structures 1s that they can reveal where information
may be missing from an utterance and have to be
provided by inference. Here the repres¢éntation makes
explicit where the coffee urn must be moved from,
namely ‘AT([}})— where the urn is now. (If the sentence
had been ‘get me the coffee urn from the kitchen’, ‘the
kitchen’ would fill this argument.) |

The indexed conceptual structures corresponding to
a single instruction step are incrementally developed
into a plan graph that represents the structure of the
animated agent’s intentions, via processes of reference
resohition, plan inference, reference grounding and plap
expansion. The leaves of the plan graph are annotated
task actions, such as those shown at the beginning of
this section.

The incremental nature of plan graph development
derives, in part, from limits on agent knowledge. In
particular, we assume that an agent cannot have up-(o-
date knowledge of any part of its environment that is
outside its direct perception, where its direct perception
is limited by a portal assumprion: Portals like doors
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connect opaquely bounded three-dimensional sub-
spaces, which may be adjacent to or embedded within
one another (e.g., boxes inside boxes). Agents can only
see into, and hence only know the contents of, spagces
that have a portal open into the space the agent
occuptes, which we call the active space. Thus agents
have to open doors, lids, etC. to explore other spaces.
Within the active space, we make the simplified
assumption that agents can see everything up to closed
portals.

When an annotated task action (i.e. a leaf in the plan
graph) becomes sufficiently specified for the agent to be
ready to commit to it and temporal dependencies
between task actions permit such commitment, 1t will
be gated, ftriggering object-specific reasoning and
processes associated with simulating the agent's move-
ments and other environmental activity. More specifi-
cally, an annotated task action will be gated when

© the action 1s ‘executable’,

© all actiony temporally prior to it have been
committed to (Previous action need not have been
completed: an agent can be, and usually is, doing
s€veral things at one time.)

O its purpos¢ has been determined,

The output of these low-level processes may either be
an indication that the agent is unable to carry out the
desired actions or a ‘program’ of behaviors 10 be
executed (simulated) in parallel. Actions change the
world, as well as the agent's knowledge. Such changes
trigger further elaboration of the agent’s intentional
structure (1.€. the plan graph) and further commitments
to action. In the next section, we will focus on aspects
of instructions that lead to expectations on the part of
the agent.

Expectations from instructions

Usually one thinks of instructions in terms of what they
explicitly tell one to do or to avoid doing. Such
structures may be conveyed explicitly or implicitly. In
AnimNL, the focus s on a difflerent role that
mstructions can play —that of providing agents with
specific, usciul expectutions about actions and therr
consequences,

We noted in our discussion of instruction steps in the
previous section, that steps may speafy several actions
that peed to be performed topether, often under partidl
ordering, to accomplish g single sub-tash. Agents must
develop some level of understanding of an entire step
before beginning to act, This is the maost obvious sense
in which instructions set gp agent expectations; by
assuming that an instruction step reliably describes a
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way of accomplishing a sub-task, an agent will expect
that the conditions needed for accomphishing sub-
scquent parts of the specified sub-task will hold when
they need to. The agent will not expect that he needs to
do anything else in order to make these conditions
hold.

Besides these general expectations, we can identify
three more specific types of expectations that instruc-
tions may engender, that agents can use in carrying out
their tasks, as follows:

® cxpectations about how long a process will take to
come to some desired state;
® cxpectations about the intended consequences of an

action;
® expectations about where objects are to be found.

turn In the next three

These are discussed In

subsections.

Expectations about processes

In some earlier work designed for creating animations
from recipes, Karlin®? analysed a range of temporal
and frequency adverbs found in instructions. One
particular construction she analysed is the following:

Do « for < duration > or unti] < event >

e.g. ‘Steam 2 minutes or until mussels open’.

Karlin notes that this 1s not a case of logical
disjunction, where the agent can choose which disjunct
to follow: rather, the explicit duration suggests the
usual amount of time that 1t will take the mussel-
steaming process to effect the desired change in the
mussels’ state. The desired state is that all the mussels
that were closed when they were put into the pot
(already open ones having been discarded as dead, prior
to this point) are now open. If they are not open after
two minutes, the agent should wait a bit longer. Those
that have not opened after another short wait should
then be discarded, since they contain nothing but mud.

The usefulness of this expectation of how long a
process will take to come to some desired state comes
from the cost of sensing. In the case of steaming,
cooking i1s usually done in a closed, opaque cooking
pot. Every time the lid is removed to check the state of
the contents, the steam used to cook the contents
escapes, setting the process back. The result of sensing
too often, is that the mussels become tough through
over-cooking. The expectation can therefore be used by
the agent to gauge how long he can safely wait before
beginning to make costly sensing tests.

Expectations about consequences

There are expectations about the intended properties of
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objects produced by actions that can have any of
several results. Consider lor example, the action of
mixing flour, butter and water. Depending on the
relative amounts of these three ingredients and the
porosity of the flour, the result may be anything from a
flaky mass to a viscous batter. Instructions may tell an
agent what the intended result 1s, so that he or she can
augment the amount of one ingredient or another, if the
immediate result does not satisfy the intended
description. For example,

a. Mix the flour, butter and water, and knead until
smooth and shiny.

b. Mix the flour, butter and water, and spread over
the blueberrics.

¢. Mix the flour, Lutter and water, and stir until all
lumps are gone.

Here the verbs ‘knead’, ‘spread’ and ‘stir’ convey the
expected viscosity of the resulting mixture.

Expectations about locations

Because multi-clause instruction steps may evoke more
than one situational context, part of an agent’s
cognitive task in understanding an instruction step is to
determine that situation in which he 1s meant to find a
referent for each of its referring expressions. This is the
process of grounding referring expressions. Because
actions can effect changes in the world or in what is
visible to an agent, certain referring expressions in an
instruction step might refer to the current world and
what the agent is aware of within it, while other
expressions might refer to objects that may only come
into existence, or whose existence the agent may only
become aware of, in the future.
To sce this, compare the two instructions

a. Go into the kitchen to get me the coflee urn.

b. Go into the kitchen and wash out the coffee urn.

In the first instruction, ‘the coflee urn’ will generally be
taken to denote an urn currently in the kitchen, one
that the agent, when given the instruction, may not
even be aware of. When given this nstruction agents
appear to develop an expectation that after they
perform the action, they will be in a context in which it
makes sens¢ to try to ground the expression and
determine 1ts referent.

The second instruction {*... and wash out the coffee
urn’) i1s different: if the agent sees a coffce urn 1n the
current context, prior to acting, he will happily ground
the referring expression ‘the coffce urn' against that
object. [f he does not see a coflee urn prior to acting, he
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develops the same expectation as in the first example,
that when he gets into the kitchen, he will be able to
ground the expression then. The fact that agents wilf
look around when they get to the kitchen if a coffee urn
is not immediately visible, opening cabinets until they
find one, shows the strength of this expectation and the
behavior it leads to.

This decision as to the context to use in grounding a
referring expression is based on distinguishing the
information (and assumptions) used to resolve a
referring expression from that used to ground it.
Reference resolution precedes reference grounding and
involves using information from the interpretation of
the current utterance (ie. the explicit description),
information from the previous discourse, and hypothe-
ses about the intended relationship between actions.

The system has two modalities —the Action Library
(or the Action Knowledge Base) and the plan graph.
Since our focus is on the natural language aspect of the
system (and also due to the limited space available in
this paper), we will not describe these modalities. The
modalities are used to compute the expectations. Thus
while processing the instruction, ‘Go into the kitchen to
get me the coffee urn’, using the Action Library and the
Plan Graph, the system computes the expectation,

‘The urn of coffee is in the kitchen’.

Once the mstruction 1s understood in this way the
appropriate actions are incorporated into the plan
graph.

The difference between this instruction and another
instruction ‘Go into the kitchen to wash the coffee urn’,
where a currently vistble urn would be taken as the
most likely referent of ‘the coffee urn’. Then in this case,
the assumption the urn of coffee is in the kitchen will not
be computed. Another assumption such as the washing-
materials are in the kitchen will be computed,

In summary, we have described some ways in which
instructions provide agents with useful expectations.
With experience, human agents internalize general
expectations and not rely on instructions for them. For
AnimNL, this means Incorporating expectations into its
action schemata and using them in claborating the plan
graph. We omit here the description of other major
components of the systems such as the planner—
geometric and functional planner and the simulator.
One goal heére is to give some idea about the rich
domain of natural language instructions for animated
agents. This rich domain for natural language
understanding ts much more ftractable than text
understanding or story understanding. Also, integrating
natural language and amimation in this manner has
several important apphcations, for example, the
development of interactive maintenance manuals.
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Summary

I have briefly described three areas in NLP which are
currently very active and represent quite a diverse range
of 1ssues and methodologies. As regards to future
prospects for NLP, clearly the trend of integrating
speech and language will continue and we can expect
much robust spoken language systems, which also
incorporate some aspects of discourse structure. More
advanced and useful commercial systems for multilingual
interfaces, machine translation, and message under-
standing systems will appear in the near future. Speech-
to-speech translation systems will also appear in limited
domains. On the theoretical side, future mathematical
and computational work will provide us more unifying
accounts of syntax, semantics, and pragmatics. It will
also contribute to psycholinguistic research which
studies human language processing.
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