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We propose as 8 working hvpothesis a Separability
Hypothesis which posits that one can factor off an
architecture for cognition front a more general architec-
ture for mind, thus avoiding a number of philosophical
objections that have been raised about the ‘strong AT
hypothesis. Using a coin-sorting machine as an example,
we discuss a range of positions on representations and
argue that, for many purposes, the same body of marter
can be interpreted as bearing different representational
formalisms. We then propose that one way to understand
the diversity of architectural theories is to make a
distinction between deliberative and subdeliberative
architectures. The search for one architecturzl level
which will explain all the interesting phenomena of
cognition is likely to be futile. There are a number of
levels that interact, and this interaction makes explana-
tion in terms of one level quite incomplete.

Dimenstons for thinking about thinking

A major problem in the study of intelligence and
cognition 1s the range of—often tmplicit-—assump-
tions about what phenomena these terms are meant to
cover. Are we just talking about cogmition as having
and using knowledge, or are we also talking about
other mental states such as emotions and subjective
awareness? Are we talking about intelligence as an
abstract set of capacities, or as a set of biological
phenomena? These two questions set up two dimensions
of discussion about intelligence. After we discuss these
dimensions we will discuss information processing,
representation, and cognitive architectures.

Dimension 1. Is intelligence separable from other
mental phenomena?

When people think ol intelligence and cognition, they
often think of an agent being in some knowledge state,
that is, having thoughts, beliefs. They also think of the
underlying process of cognition as something that
changes knowledge states. Since knowledge states are
particular types of information states the underlying
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process is thought of as information processing. (We
will discuss this in more detail later 1o the paper.)
However, besides these knowledge states, mental
phenomena also inchude such things as emotional states
and subjective consciousness, Under what conditions
can these other mental properties also be attributed to
artifacts to which we attribute knowledge states? 1Is
intelligence separable from these other mental pheno-
mena?’

It is possible that intelligence can be explained or
simulated without necessanly explaming or simulating
other aspects of mind. A somewhat formal way of
putting this Separability Hypothesis is that the know-
ledge state transformation account can be factored off
as a homomorphism of the mental process account.
That is: If the mental process can be seen as a sequence
of transformations: M, —>M,—..., where M, is the
complete mental state, and the transformation function
(the function that is responsible for state changes) 1s £,
then a subprocess K, »K,— .- can be idenufied such
that each K; is 2 knowledge state and a component of
the corresponding M, the transformation function is f,
and fis some kind of homomorphism of F. A study of
intelligence alone can restrict itself to a characterization
of K’s and f, without praducing accounts of M’s and F.
If cognition is in fact separable in this sense, we can In
principle design machines that implement f and whose
states are interpretable as K's. We can call such
machines cognitive agents, and attribute intelhgence to
them if they achieve goals. However, the states of such
machines are not necessanty interpretable as complete
Ms, and thus they may be denied other attributes of
mental states.

For example, Searle’ holds that a computer
program that successfully translates from Chinese to
Enghsh cannot be said to ‘understand Chinese’, even
though it is behaviorally intelligent in this task. In our
termunology, we would attribute to the program various
appropriate knowledge states. Searle's objection can be
formulated as the claim that ‘understanding’ is a
subjective property that goes beyond merely being in
the corresponding knowledge state, and thus the
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program can be denied that attribute.

However, other researchers claim that intelligence
cannot be separated from other mental phenomena.
Such a claim is often made from two opposite
perspectives. Most people in artificial intelligence (Al)
and cognitive science say that intelligence and other
aspects of mind are inseparable because the other
mental aspects (subjectivity, emotional states, etc) are
simply ‘emergent’ properties of certain kinds of complex
agents with knowledge states. If this is the case, the
knowledge state account, and with it an account in
terms of nformation processing, will be a sufficient
basis for explaining and building minds. From this
perspective, explanation of the phenomena of intelli-
gence and cognition will also turn out to be explana-
tion of the full range of mental phenomena. By the
same token, 1t 1s assumed that artificial agents that can
be plausibly interpreted as solving problems, achieving
goals, and performing reasoning will also have
emotional states and subjective consciousness attribu-
table to them.

The second perspective from which intelligence is
taken to be inseparable from other mental phenomena
holds that there is no coherent way to factor off a
knowledge state process account from a mental state
process account. There is only one mental process. That
is, from this point of view, the categorical difference
between different attributes of mental states is affirmed,
but the Scparabiiity Hypothesis is denied. We can talk
about knowledge components of mental states, but
mental processes have no ‘subprocesses’ which only
have to do with information processing. In this view,
the only way to explain or build an inteltigence is to
solve the problem of explaining or building a mind.
Thus only agents which have the totality of what we
call ¥mind’ will be able to perform as truly successful
problem solvers across the whole range of situations
deemed to require intelligence.

FEdelman?®-> has argued that information processing is
not the appropnate way to talk about cogmtion.
Instead he proposes that the basic mechanisms of the
brain are the selection of successful neural pathways in
response to interactions with the world. The processes
that underhe this neuronal path selection resemble
Darwinian evolutionary processes. Cognitive pheno-
mena, in his view, cannot be separated and understood
in information processing terms, since cognitive states
are simply aspects of more gencral brain states, and the
basic brain mechanisms are not information processcs.

Dimension 2: Functional versus biological

The second dimension in discussions about intelligence
involves the extent 1o which we need to be ticd to
biology for understanding intelligence. Can intelligence
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be characterized abstractly as a functional capability
which just happens to be realized more or less well by
some biological organisms? If it can, then study of
biological brains or of human psychology i1s not
logically necessary for a theory of cognition and
intelligence, jJust as enquiries into the relevant capabilities
of biological organisms ar¢ not needed for the abstract
study of logic and anthmetic or for the theory of flight.
Of course, we may learn something from biclogy about
how to practically implement intelligent systems, but we
may feel quite free to substitute non-biological (both in
the sense of architectures which are not brain-like and
in the sense of not being constrained by considerations of
human psychology) approaches for all or part of our
implementation. Whether intelligence can be charact-
erized abstractly as a functional capability surely
depends upon what phenomena we want to include in

defining the functional capability, as we discussed. We
might have different constraints on a definition that
needed to include emotion and subjective states from
on¢ that only included knowledge states. Clearly, the
enterprisc of Al deeply depends upon this functional
view being true at some level, but whether that level 1s
abstract logical representations as in some branches of
Al, Darwimian neural pathway sclections as proposed
by Edelman, something intermediate, or something
physicalist 1s still an open question.

Newell holds a functional view of intelhigence.
According to Newell®, intelligent agents can be
abstractly characterized by their goals, their knowledge
and the Pninciple of Rationality. That 1s, when we
attribute intelligence to an agent in some behavior, we
are attributing to that agent a goal, 2 body of know-
ledge, and a capability, at least in that instance of
behavior, of applying knowledge relevant to the goal to
decide what to do. It is important to note that all of
this is attribution. Newell calls a description of an agent
in these terms a Knowledge Level descnption. Know-
ledge Level descriptions view the agent as being 1n a
knowledge state, and the Principle of Rationality as the
abstract characterization of how the agent changes
knowlcdge states. (Attnbuting knowlcdge and goals to
an agent is stmilar to taking an intentional stance
towards agents that Dennett® has proposed.)

There s no claim that knowledge is nternally
represented explicitly, and in just Lhe same propositional
units as in the attribution, or that explicitly inferential
processes are operating. Newell defines the functionality
of intelligence as the abiity of an agent to realize the
knowlcdge potential inherent 1in ts Knowledge Level
description. For Newell the important character of
intclhgence i1s the agent’s abibity to muake full use of the
knowledpe attetbuted to i, not the amount or the
specifics of the agent’s knowledge. Even humuns are
only an approximation to the ideal ntelligence so
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defined. In this perspective, biological evolution will be
scen as operating in the direction of better and betier
approximation to this sort of intelligence through the
evolution of more compiex knowledge state representa-
tions {of the sort that finds its culmsnation in human
language) which are capable of supporting open-¢nded
dehiberation and the application of knowledge to new
goals.

So, with Newell, we have a functional characteriza-
tion of intelligence which is independent of biology. But
Newell goes on to propose an archiecture which 1s
inspired by one biological instantiation, the human
cognitive apparatus. This architecture is similar to the
human one in that it has a long-term memory and a
deliberative architecture similar to the one that in his
view characterizes human cognition. But, because it is a
functional architecture, it goes beyond the biological in
many wayvs, For example, the 1deal architecture always
retrieves the relevant knowledge, unhke the human
version which often [ails to remember. Further, the
functional architecture is based on digital computer-like
symbol structures. For Newell, it does not matter if the
human bram s hierally such a computer. All that
matters is that the kind of computer-iike symbol
structures can support the functionality needed. Further,
the architecture that is proposed by Newell as a
possible one for Al is just one among many possible
realizations of the abstract functional capability speci-
fied in his definition of intelligence.

In general, functional characterizations end up using
aspects from very different levels of descriptions of
biological mind. For example, the connectionists want
to be biological enough to include some of the smooth
concept learning done by humans, and an architecture
based on some abstract properties of what they take to
be the information processing of brains, but their
ornentation 1s not so biological as to demand wet
neurons and necuronal chemistry. Searle wants to be
biological enough to demand the inclusion of the
subjective awareness of being in a knowledge state
(which 1s how we interpret his claim that a translator
who follows the algorithm does not really ‘understand

Chinese’) that humans have, but he thinks that it is
most bkely the chemistry of the brain that 1s
responsible for it, and thus a pure information
processing account will not succeed. Edelman wants to
be biological enough to include the way in which
organisms’ brains, in his view, do not use pre-made
internal labels (which he takes to be the characteristic
property of information processing). Since his theory of
pathway selection itsell is stated 2as an abstract
mechanism, presumably artifacts could be constructed
which implement that abstract architecture without any
further reference to biology. Connectionists (Rumelhart
et al.®) and Edelman want to be biological enough to
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understand the common heritage between animals and
humans, while traditional Al researchers stop their
biological commitment to characterizing intelligence as
using knowledge to reason and achieve goals (since they
take humans to be doing that). Thus, all such proposals
pick out some interesting aspect from biological
phenomena. They then proceed to formulate a
functional model that includes the selected aspect. After
this, real biology is mo longer logically necessary.
Whether any of these proposals would lead to the pro-
duction {or explanation) of mentality in total, or almost
circularly, produce only those aspects of mentality that
are included in the functional definition, is obviously an
open question,

Comn-sorters and knowledge states

In this article we will take the Separability Hypothesis
as a working hypothesis. At this point, for all practical
purposes Al (and cognitive science) cun be considered
the study of those regularities of mind that have
information-processing explanations. We will assume
that it 1S a worthwhile enterprise to concentrate on
phenomena In which knowledge states of the agent
seem to play the central role. Further we will focus on
processes that account only for generation and
transformation of such knowledge states. Now this
might appear to be a commitment to nformation
processing so strong that magy interesting theories will
be ruled out. However, we will argue that the
knowledge state account is very flexible, and can even
be applicd to situations where there is no explicit
information processing in the conventional sense. To
illustrate this we will use the example of a coin-sorter
for coins of USA.

Analysis of a coin-sorter

Let us suppose that we have a black box ¢oin sorter in
front of us, and we want to describe its behavior
computationally. All we see is that the coins are put
into the top of the comn sorter, and then they come out
through one of four slots at the bottom, with all the
dimes coming out Of the slot designated the dime siot,
and the quarters coming out of the slot designated the
quarter slot, and so on. Let us assume we have four
types of Al theorists: a logician, someone who is
committed to algorithms alone as the language in
which to formulate Al theories, a connectionist and a
physicalist, ie. one who claims that the appropriate
¢xplanation of the coin-sorter should be in terms of its
physics, not representations.

Logic system coin sorter. The logician proposes that
the machine’s behavior can be understood in terms of
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four logical axioms, one for each coin. A set of
measurements 1S made on each of the coins.
Perhaps diameter, weight and thickness are the coin’s
important features for this purpose. Each coin type is
characterized by a logical formula of predicates
involving the measurements. For example, the axioms
for each of the four types of coins will indicate what
combination of weight, thickness and diameter chara-
cterize that coin type. The logician claims that the
behavior of the machine can then be characterized by a
theorem-proving decision procedure that attempts to
prove cach of the theorems for each coin that is
inserted, followed by a mechanmism that places the coin
into that slot corresponding to the theorem that was
proved,

Note that this language enables us to argue about
dificrent theories about what is being measured by the
sorter. Someone could watch the behavior of the coin
sorter and assert that the machine i1s not using informa-
tion about the weight and diameter of the coins, but
rather about, say, its color and metallic content. They
could propose an alternative axiom system in terms of
color and metallic content. Each such axiom system is a
different content theory expressed in the logic forma-
lism.

Further, the formalism can be used to evaluate these
alternate theories and test them experimentally. We can
use logical inference to draw out the consequences of
each proposal. One hypothesized content theory might
predict that a given foreign coin, say an Indian rupee,
will come out of the quarter slot, while another might
predict that the rupee will come out of the penny siot.
We can then test to see which hypothesized content
theory most accurately describes the decision-making
process within the black box by putting the rupee in
and seeing which slot it is placed at.

Notice that the usefulness of the logic formalism has
two levels. On one level, we can use the formalism to
describe different content theories, e.g. the theory that
the coins are being sorted by coloer versus one that they
are being sorted by weight. We can use the inference
machinery that comes with logic to derive consequences
of different axioms and test one theory of representa-
tional content against another. For this purpose, there
is no need to commit onesell to how the insides of the
sorter work in any detail, except that information of
certain types is being used to make decisions of certain
types. We are simply uvsing logic to reason about the
agent, much as it 1s used in computer science to reason
about the correctness of a computer program writicn in
some other language than logic. We are using logic to
give a Knowledge Level description of the system,

The second use of logic may be to model, or carry
out, internal processing. For example, the coin-sorter
might actually have dedicated Prolog chips inside

CURRENT SCIENCE, YOL. 64, NO. 6, 25 MARCH 199]

actually implementing the theorem provers. The coin-
sorter might literally work by actuating an arm that
places the coins in the slots as soon as the results of the
theorem provers are available.

Decision tree coin-sorter, The second theorist observes
the coin-sorter and announces that its behavior can be
described by a decision tree. In a decision tree machine,
there is an initial decision made between two groups,
e.g. between the group consisting of the nickel and the
quarter, and the group consisting of the dime and the
penny. For each of the groups, at the next point in the
tree, an additional decision is made to make a choice
among subgroups, and this is repeated until each leaf
node corresponds to one of the elements of the original
group. We now have a decision tree. In the coin-sorter
example, we would only need two levels in the tree. The
criteria for the decisions at each node are given in the
form of rules involving values of measurements made
on the coin.

Again, we can use the formahsm as a descriptive
device, or as a commitment to a certain internal
processing. For example, as a descrniptive device, the
decision tree still enables us to propose different content
theories, not only about what aspects of the coins are
measured as in the logic case, but also about what sets
of decisions are made before what decisions. In this
sense, what was left as a feature of internal processing
in the use of logic for external description, namely some
aspect of control strategy, is actually now made part of
the external description of the device. The axiom system
made no commitment to control. This expresses the
difference between a Knowledge Level account and a
program level account.

On the other hand, similar to the logic case, one can
imagine microprocessors actually implementing the
decision tree algorithm, using the measurements to
make the choices in the tree, and activating the coin-
placing mechanism appropriately when a leaf node is
reached.

Connectionist network coin-sorter. The connectionist
claims that what 1s really going on in the coin sorter
involves the same features, diameter, color, or whatever,
as the other theories assumed, but these evidences are
‘weighted’ and combined as in a connectionist network.,
Different theories of representational content could still
be represented by identifying the nodes with different
types of measurcment. How the information is used can
be described by means of different weights and
thresholds 1n the network. Intermediate abstractions
may be capturcd by hidden umts. The intermediate
abstractions arc combincd with other mtermediate
abstractions and agaun weighted and higher  level
decision units are constructed. A spectlic outpat node 1s
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identified for each coin. The ‘energy’ at the output
nodes will be a function of how much evidence 1s
coming through for the coin for which 1t stands, The
output node corresponding to the largest activation will
be chosen as the decision node.

Pretty much all the points we made about logic and
decision trees can be repeated for this account as well.
The connectionist framework can be used to describe
content theories about what information s used, and to
give an account of what evidence 1s combined in what
proportion with what other evidence. Inferences about
different content theories can be made and tested. At
this level, no commitment needs to be made that the
inside of the sorter is literally a connectionist machine.
On the other hand, the connectionist network can be
used as the internal information processor as well.

Voila: Levers and holes! Let us now open the cown-
sorter and look at its inside. We see that as you put a
coin in, it passes through fevers and holes, all cleverly
arranged such that the coin makes its way to the right
slots. Clearly, the different weights and the sizes of the
coin have different effects on the levers and the holes.
There are no prologue chips or miCcroprocessors or
connectionist networks inside the black box, just
mechanical parts. The physicalist, the one who does not
believe in representations, smiles.

Does the sorter have a knowledge state interpretation?

In response to the question, *How did the quarter end
up in the slot named “quarter”?, two kinds of answers,
both correct, can be given. In one, the answer would be
physicalist: an account of the coin’s movement through
the inside of the sorter following the physical laws. In
the other, the answer would be in terms of how the
levers and holes “use’ information about the diameter
and the weight and how the sorter ‘decides’ about the
coin’s direction of movement. Clearly, whoever designed it
designed the sorter in such a way that there 1s a close
mapping between the information story and the
physical story. Because of this mapping, one can talk
about the sorter being in various knowledge states. Of
course, if the sorter that works by levers and holes has
a consistent interpretation in terms of knowledge states,
then certainly any sorter that actually had a chip
proving theorems or implementing the decision tree
algorithm or the connectionist network will also have a
similar interpretation. That is, the knowledge state and
information processing talk is applicable to all devices
whose behavior has a decision-making interpretation,
rrespective of how they actually work.

We can see that the logic account, the decision tree
alporithm account and the connectionist account are all
alternative languages in which to couch the information
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processing account. While all three frameworks can be
used to describe information tepresentation and
processtng, they are not all equivalent. Connectionism
enables one to talk about ‘softer’ combination of
information using real numbers, while logic enables us
to talk about variables and quantification, and the
language of algorithms enables us to talk about control
strategies. However, our main point here is that they
can all be used as {frameworks for describing informa-
tion representation and processing, and also for
implementing information processing. In Newell’s
language, they can be used both as languages for the
Knowledge Level and for the Symbol Level.

The coin-sorter is a simple device, but it illustrates
the issues with respect to understanding biological
brains. People take a whole range of stances on
whether the bramn is actually doing information
processing on representations. Strong materialists argue
that representationalist accounts of such systems are -
wrong, and the only scientifically acceptable causal
story 1s at the level of the matter that composes the
brain. Edelman is also against the information
processing account, but his counter-proposal is in terms
of an abstract pathway selection account, which is still
an abstract functional architecture (i.e. no appeal to
physical laws is made), though not an information
processing one. Among those who agree that there is a
causal story to be told at the level of representations,
there are many divisions, but broadly, we can
distinguish between connectionist style representations
and discrete symbol structure representations. The
moral of our analysis of the coin-sorter is that for
explaining behavior which itself 1s couched in informa-
tional terms, the information processing account is
useful as a stance to describe the biological brain.

Much of the argument in the field is a result of a
confusion between two senses of being an information
processor using representations. In one sense, when we
ask whether the brain processes information we are
really asking whether it is appropriate to ascribe
informational activity to the brain and in the other
sense we are literally descnbing what the brain or
device actually does. Ascribing information processing
(s to take an information processing stance. For
example we might ascribe information processing
activity to the visual system on the grounds that il
produces information about the world. This ts the sense
of information-processing we are using when we stand
outside the brain and look at behavior and ascribe an
information-processing structure to the behavior that
we sce. When we look at a black box coin sorter as a
decision maker and work out a model of its
input/output bchavior, we are ascribing information
processing to it.

However, taking an informational stance whereby we
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ascribe information processing to a device (or brain)
does not commit us 10 that device literally processing
information, or using representations, in the specific
medium in which the description is made. There is a
fact of the matter about whether the information
processing is being done in one medium or another. At
some point the behavior of the sorter which employs a
Prolog theorem prover will be different from that based
on levers and holes. When the latter sorter mal-
functions, the explanation may be given in terms of
physical properties, such as a lever being jammed, while
in the case of the former type of sorter, the explanation
might be in terms of an error in the program in the chip
or some¢ hardware failure in the chip. (And in the case
of the brain, in addition to the problem of falure
modes, there are other issues where the medium
becomes relevant: properties related to learning, are one
example.) But for most purposes where people think
that the issue 18 the medium of representation, the issue
often turns out to be one that can be formulated at the
Knowledge Level.

We can certainly ask similar questions about the
brain, It 1s a matter of fact whether the brain s an
information processor of the ‘physicalist’ type, one of
the connectionist varety, or one that has Turing
machine-like symbols. {Putnam’ has argued that even
whether a piece of matter is a Turing machine is just a
stance, but we think that the consensus 1s that
Putnam’s argument does not really work, and that not
all pieces of matter can be interpreted as a given Turing
machine.) But as long as we are interested in aspects of
the organism’s behavior that have an informational
flavor (such as deasion-making), talk of informa-
tion and 1ts use 1s necessary in the analysis, just as it
was in the case of the coin-sorter. Much of the criticism
of the information processing view (from Edelman, e.g)
of information processing i1s based on a narrow view of
what the information-processing talk commits one to.
Conversely, many proponents of information processing
explanations are also committed to such a narrow view,
making far more commitments about internal processes
than necessary.

In the rest of the article, we will adopt this broad
sense of information processing or knowledge state
account as a stance that 1s usefu! i describing agents to
which we ascribe cognitive capacities,

Architectures for intelligence

We now move o a discusston of architectural proposals
within the information processing perspective. Qur goal
is 1o try to place the multiplicity of proposals into
perspective. As we review various proposals, we will
present some judgements of our own about relevant
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issues. But first, we need to review the notion of an
architecture and make some additional distinctions.

Form and content issues in architectures

In computer science, a programming language corres-
ponds to a virtual architecture. A specific program in
that language describes a particular (virtual) machine,
which then responds to various inputs in ways defined
by the program. The architecture is thus what Newell
calls the fixed structure of the information processor
that is being analysed, and the program specifies a
vanable structure within this architecture. We can
regard the architecture as the form and the program as
the content, which together fully instantiate a particular
information-processing machine. We can extend these
intwitions to types of machines which are different from
computers. For example, the connectionist architecture
can be abstractly specified as the set {{N}, {n}, {no},
{&:}> {wi;}}, where {N} is a set of nodes, {n;} and {n,)
arc subsets of {N} called input and output nodes
respectively, {{;} are the functions computed by the
nodes, and {w;;} is the set of weights between nodes. A
particular connectionist machine 1s then instantiated by
the ‘program’ that spectfies values for all these
variables.

We have made a distinction between an architecture,
the form in which the architecture will accept content
(the programming language form) and the content of
the representation itself. When we explain specific types
of cognitive phenomena, we will end by coming up with
a complex budget of credit allocation: some aspects will
be explained by the properties of the architecture
{(perhaps some timing phenomena, and also some
aspects of learning), some will be explained by the sort
of mformation that 1s involved in the content. Credit
allocation in this manner s a tricky analytic task.

We also need to make an additional distinction
between micro- and macro-architectures, a distinction
that i1s especially useful for cognition. A bank of
information processors of identical type connected in
some way has a macro-architectural description in
terms of the modules and their connections, while the
entire system has a uniform micro-architectural descrip-
tion.

Many Al and cognitive science theories are really
theories about the content of knowledge, or types of
knowledge, needed for some task of interest, with
minimal commuitment to the architecture, Many debates
in the ficld, which are ostensibly about the architecture,
turn out to be about the types of knowledge. For
example, Dreylus® talks about *What computers cannot
do’. 1t (urns out that he s opposed to the idea that
intelligence can come out of 4 system that has a
knowledge base which explicitly and  exhaustively
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represents world facts and relationships in some logical
form. However, there are people within computational
Al who have been making this point as well. For
example, Schank® has argued that our knowledge is not
in the above form of abstract facts at all, but rather in
the form of experiences indexed and abstracted in
various ways. Thus the issue, at least based on Dreyfus’
arguments, is not what computers cannot do, but what
certain kinds of knowledge representations cannot do.
It may turn out that the kind of information that
Dreyfus sees as necessary cannot be represented in
computers either, but he does not make the arguments
for this position.

We are now ready to give an overview of the issues in
cognitive architectures. We will assume that the reader
is already familiar in some general way with the
proposals that we are discussing. Our goal is to place
these 1deas in perspective.

Intelligence as just computation

Until recently the dominant paradigm for thinking
about information processing has been the Turing
computer framework, or what has been called the
discrete symbol system approach, Information processing
theories are formulated as algorithms operating on data
structures. In fact AY was launched as a field when
Tunng proposed in a famous paper that thinking was
computation (the term ‘artificial intelligence’ itself was
coined Jater). A natural question in this framework
would be whether the set of computations that underlie
thinking IS a subset of Turing-computable functions,
and if so, how the properties of this subset should be
characterized.

Because of the technological nature of much of Al
only a small number of resecarchers have been
concerned with intelligence in general. Most of the
work consists of algorithms for specific problems that
seem to require intelligence and that are practically
important. Algorithms for diagnosis, design, planning,
etc. are proposed, because these tasks are seen as
mportant for an intefligent agent. But as a rule no
effort is made to relate the algorithm for the specific
task to a general architecture for intelligence. While
such algonthms are useful as technologies and to make
the point that several tasks that appear to require
intelhgence can be done by certain classes of machines,
they do not give much insight into intelligence in
general.

Architectures for deliberation

Historically most of the intuitions in Al about
intelligence have come from introspections about
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human consciousness, specifically about what people
perceived to be the relationships among conscious
thoughts. We are aware of having thoughts which often
follow one after another. These thoughts are mostly
couched in the medium of natural language, but
sometimes thoughts include mental images as well.
When people are thinking for a purpose, say for
problem solving, there is a sense of directing thoughts,
choosing some, rejecting others, and focusing them
towards the goal. Activity of this type has been called
‘deliberation’. Deliberation, for humans, is a coherent
goal-directed activity, lasting over several seconds or
longer. For many people thinking is the act of
deliberating in this sense. Activities in this time span
should be contrasted with other cognitive phenomena,
which, in humans, take under a few hundred
milliseconds: real-time natural language understanding
and generation, visual perception, being reminded of
things, and so on.

Different kinds of theories about the architecture of
the cognitive machine have been proposed depending
upon what kinds of patterns among these thoughts the
researchers have been struck by. Two groups of
proposals about such patterns have been influential in
Al theory-making: the reasoning view and the goal-
subgoal view.

Deliberation as reasoning. People have for a long time
been struck by logical relations between thoughts and
have made the distinction between rational and
irrational thoughts. Remember that Boole’s book on
logic was titled ‘Laws of Thought’. Thoughts often have
a logical relation between them: we think thoughts A
and B, then thought C, where C follows from A and B.
In AI, this view has given rise to an idealization of
intelligence as rational thought, and consequently to
the view that the appropriate architecture is one whose
behavior 1s governed by rules of logic. In AI, McCarthy
15 most closely identified with the logic approach to
Al, and ref. 10 is considered a clear early statement of
some of the i1ssues 1n the use of logic for building an
intelligent machine. Researchers in Al disagree about
how to make machines which display this kind of
rationality. One group proposes that the ideal thought
machme is a logic machmne, one whose architecture has
logical rules of inference as its primitive operators.
These operators work on a storehouse of knowledge
represented in a Jogical formalism and generate
additional thoughts, For example, the Japanese Fifth
generation project came up with computer architectures
whose performance was measured m (millions of)
inferences per second. The other group believes that the
architecture itself (i.e. the mechanism that generates
thoughts) i1s not a logic machine, but one which
generates plausible, but not necessarily correct, thoughts,
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and then knowledge of correct logical patterns is used
to make sure that the conclusion is appropriate.

Historically rationality was characterized by the rules
of deduction, but in Al the notion is being broadened
to include a host of non-deductive rules under the
broad umbrella of ‘non-monotonic logic’*! or ‘default
reasoning, to capture various plausible reasoning rules.
There 1s considerable difference of opinion about whether
such rules exist in a domain-independent way as in the
case of deduction, and how large a set of rules would be
required to capture all plausible reasoning behaviors. If
the number of rules is very large, or if they are context-
dependent in complicated ways, then logic architectures
would become less practical.

At any point in the operation of the architecture,
many inference rules might be applied to a situation
and many inferences drawn. This brings up the control
issue in logic architectures, ie. decision about which
inference rule should be applied when. Logic itself
provides no theory of control. The application of the
rule 1s guaranteed, in the logic framework, to produce a
correct thought, but whether it is relevant to the goal is
decided by comsiderations external to logic. Control
tends to be task-specific, i.e. different types of tasks cail
for different strategies. These strategies have to be
explicitly programmed in the logic framework as
additional knowledge.

Deliberation as goal-subgoaling. An alternate view of
deliberation is inspired by another perceived relation
between thoughts and provides a basic mechanism for
control as part of the architecture. Thoughts are often
linked by means of a goal-subgoal relation. For
example, you may have a thought about wanting to go
to New Delhi, then you find yourself having thoughts
about taking trains and airplanes, and about which is
better, then you might think of making reservations and
so on. Newell and Simon'? have argued that this
relation between thoughts, the fact that goal thoughts
spawn subgoal thoughts recursively until the subgoals
are solved and eventually the goals are solved, is the
essence of intelligence as a mechanism. More than one
subgoal may be spawned, and so backtracking from
subgoals that did not work out is generally necessary.
Deliberation thus looks like search in a problem space.
Setting up the alternatives and exploring them is made
possible by the knowledge that the agent has. In the
travel example above, the agent had to have knowledge
about different possible ways to get to New Delhi, and
knowledge about how 1o make 4 choice between
alternatives, A long term memory is generally proposed
which holds the knowledge and from which knowledge
relevant to a goal 1s brought to play during
deltberation, This analysis suggests an architecture for
deliberation which retneves relevant knowledpe, sets up
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a set of alternatives to explore (the problem space),
explores 1, sets up subgoals, etc.

The most recent version of an architecture for
deliberation in the goal-subgoal framework is Soar®.
Soar has two important attributes. The first is that any
difficulty 1t has in solving any subgoal simply results in
the setting up of another subgoal, and knowledge from
long term memory is brought to bear in its solution. It
might be remembered that Newell’'s definition of
intelligence 1s the ability to realize the knowledge level
potential of an agent. Deliberation and goal subgoaling
are intended to capture that capability: any piece of
knowledge in long term memory is available, if it is
relevant, for any goal. Repeated subgoaling will bring
that knowledge to deliberation. The second attribute of
Soar 1s that it ‘caches’ its successes in problem solving
tn 1ts long term meniory. The next time there is a
stmilar goal, that cached knowledge can be directly
used, instead of searching again in the corresponding
problem space.

This kind of deliberative architecture confers on the
agent the potential for rationality in two ways. With the
right kind of knowledge, each goal results in plausible
and relevant subgoals being setup. Second, ‘logical
rules’ can be used to verify that the proposed solution
to subgoals 1s indeed correct. But such rules of logic are
used as pieces of knowledge rather than as operators of
the architecture itself. Because of this, the verification
rules can be context- and domain-dependent.

Another point to note is that one of the results of this
form of deliberation ts the construction of special
purpose algorithms or methods for specific problems.
These algorithms can be placed in an external computa-
tional medium and as soon as a subgoal arises that
such a method or algorithm can solve, the external
medium can solve it and return the results. For
example, during design an engineer might set up the
subgoal of computing the maximum stress in a truss,
and invoke a finite elecment method running on a
computer. The deliberative engine can thus create and
invoke computational algorithms. The goal-subgoaling
architecture provides a natural way to integrate
external algorithms.,

In the Soar view, long term memory is just an
associative memory. It has the capability to ‘recognize’
a situation and retrieve the relevant picces of hnow-
ledge. Because of the fearning capability of the archi-
tecture, cach episode of problem solving gives rise to
continuous improvement. As a problem comes along,
some subtasks are solved by external computational
architectures which implement special purpose algo-
rithms, while others are directly solved by compided
knowledge in memory, while yet others are solved by
additional dehberation. This ¢ycle makes the osverall
systemy ancreasingly more powerful. Eventually, most
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routine problems, including real-time understanding
and generation of natural language, are solved by
recognition. (Recent work by Patten et al.?? on the use
of compiled knowledge in natural language under-
standing is compatible with this view.)

Deliberation seems to be a source of great power in
humans. Why is not recognition enough? As Newell
points out, the particular advantage of deliberation is
distal access to and combination of knowledge at run-
time In a goal-specific way. In the dehberative machine,
temporary connections are created between pieces of
knowledge that are not hard-coded, and that gives it
the ability to reahze the knowledge level potential
more. A recognition architecture uses knowledge less
effectively: if the connections are not there as part of the
memory element that controls recognition, a piece of
knowledge, though potentially relevant, will not be
utilized in the satisfaction of a goal.

As an architecture for deliberation, the goal-subgoal
view seems to us closer to the mark than the reasoning
view. As we have argued elsewhere!?, logic seems more
appropriate for justification of conclusions and as the
framework for the semantics of representations than for
the generative architecture,

Al theories of deliberation give central importance to
human-level problem solving and reasoning. Any
continuity with higher animal cognition or brain
structure is at the level of the recognition architecture
of memory, about which this view says little other than
that 1t 1S a recognition memory. For supporting
deliberation at the human level, long term memory
should be capable of storing and generating knowledge
with the full range of ontological distinctions that
human language has.

Is the search view of deliberation too narrow?. A
criticism of this picture of deliberation as a search
architecture is that it is based on a somewhat narrow
view of the function of cognition. It 1s worth reviewing
this argument bnefly.

Suppose a Martian watches a human in the act of
multiplying numbers. The human, during this task, is
emulating some multiplication algorithm, i.e. appears to
be a multiplication machine. The Martian might well
return to his supeniors and report that the human
cognitive architecture 15 a multiplication machine, but
we know that the multiplication architecture is a
fleeting, evanescent virtual architecture that emerged as
an interaction between the goal (multiplication) and the
procedural knowledge of the human. With a different
goal, the human might behave like a different machine.
It would be awkward to imagine cognition to be a
collection of different architectures for each such task:
in fact, cognition i1s very plastic and is able to simulate
various virtual machines as needed.
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Is the problem space search engine that has been
proposed for the deliberative architecture such an
evanescent machine? One argument against it is that it
1s not intended for a narrow goal like multiplication,
but for all kinds of goals. Thus it is not fleeting, but
always operational.

Or s it? Il the sole purpose of the cognitive
architecture is goal achievement (or ‘problem solving),
then it is reasonable to assume that the architecture
would be hard-wired for this purpose. What, however, if
goal achievement is only one of the functions of the
cognitive architecture, common though it might be? At
least iIn humans, the same architecture is used to
daydream, just take in the external world and enjoy it,
and so on. The search behavior that we need for
problem solving can come about simply by virtue of the
knowledge that 1s made available to the agent’s
deliberation from long term memory. This knowledge is
either a solution to the problem, or a set of alternatives
to consider. The agent, faced with the goal and a set of
alternatives, simply considers the alternatives in turn,
and when additional subgoals are set, repeats the
process of seeking more knowledge. In fact, this kind of
search behavior happens not only with individuals, but
with organizations. They explore alternatives, but we
do not see a need for a fixed search engine for

explaining organizational behavior. Deliberation of
course has to have the right sort of properties to be
able to support search. Certainly adequate working
memory needs to be there, and probably there are other
constraints on deliberation, but it does not have to be
exclusively a search architecture. Just like the multipli-
cation machine was an emergent architecture when the
agent was faced with that task, the search engine is the
corresponding emergent architecture for the agent faced
with a goal and equipped with knowledge about what
alternatives to consider. In fact, a number of other such
emergent architectures built on top of the deliberative
architecture have been studied earlier in our work on
Genernic Task architectures’®, These architectures were
intended to capture the needs for specific classes of
goals (such as classification).

The above argument 1s not to deemphasize the
importance of problem space search for goal achieve-
ment, but to resist the identification of the architecture
of the conscious processor with one exclusively
intended for search. The problem space architecture is
still important as the virtual architecture for goal-
achieving, since it 1s a common, though not the only,
function of cognition.

Of course, that cognition goes beyond just goal
achievement 1s a statement about human cognition. If
we fake a design perspective and seek to specify an
architecture for a function called intelligence which
itself is defined in terms of goal achievement, then
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clearly we are free to design an architecture best suited
for that purpose. A deliberative search architecture
working with a long term memory of knowledge
certainly has many attractive properties for this
purpose as we have discussed in this section.

Architectures below deliberation

We made a distinction between cognitive phenomena
that occur m under a few hundred milliseconds and
those that evolve over longer time spans, and covered
the latter under deliberation. We will call the
architecture that handles the former phenomena
subdeliberative. 1n deliberation, we have access to a
number of intermediate states in problem solving, After
you finished planning the New Delhi trip, I can ask you
what alternatives you considered, why you rejected
taking the train, and so on, and your answers to them
will generally be reliable. You were probably aware of
rejecting the train option because you calculated that it
would take too long. On the other hand, we have
generally no clue about how the subdeliberative
architecture came to any conclusion. If you recognize
someone after not having seen him for twenty years,
and that person expresses surprise by asking, ‘I have
changed a lot in twenty years. How did you recognize
me7, you may come up with something like, ‘I bet it is
your nosel’, but you cannot be sure. You have no access
to how your perception system actually recognized that
person. Similarly, you may have your own theory of
why you were reminded of something, but you have no
spectal access to what went on during that reminding.
Freud’s model of mind had complicated unconscious
processes working, and in fact, in this view, conscious-
ness was often misled about the real content of these
unconsclous processes,

Many people in Al and cognitive science feel that the
emphasis on complex problem solving as the door 1o
understanding intelligence 1s misplaced, and that
theorigs that emphasize rational problem solving only
account for very special cases and do not account for
the general cognitive skills that are present in ordinary
people. This group of researchers focus almost
completely on  the nature of the subdeliberative
architecture. There is also a belief that the subdclibera-
tive architecture i1s dircctly reflected in the structure of
the neural machinery in the brain. Thus, some of the
proposals for the subdeliberative architecture claim to
be inspired by the structure of the brain and claim a
biological basis in that sense,

Alternatite proposals, The various proposals  dffer
along a number of dimensions: what kinds of 1asks the
architecture performs, degree of parallelism, whether i
1s an information processing architecture &t all, and
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when 1t is taken to be an information processing archi-
tecture, whether it is a symbolic one or some other type.

With respect to the kind of tasks the architecture
performs, we already mentioned Newell's view that 1t 1s
just a recognition architecture. Any smartness 1t
possesses is a result of good abstractions and good
indexing, but architecturally, there 1s nothing particularly
complicated. In fact, the good abstractions  and
indexing themselves were the result of the discoveries of
deliberation during problem state search. Being smarter,
from the Newell perspective, is done by converting
more and mose deliberative problems into stored
recognition patterns through chunking. The real
solution to the problem of memory, for Newell, is to get
chunking done rnight: the proper level of abstraction,
labeling and indexmng is all done at the time of
chunking. Theories of memory representation (such as
Schank’s) are in this senseé content theories of indices
and labels, not architectural theories. Such content
theories of memory are not really in conflict with the
Newell theory of deliberative architecture, since the

latter merely gives a way for the content to come to be
the way it is.

In contrast to the recognition view are proposals that
sce relatively complex problem solving activities going
on in subdeliberative cognition. Minsky!S originally
proposed a specific architecture for memory based on
frames, which are organized as a network of concepts,
each of which contained prototypical information
about the concept. Relatively complex procedures were
embedded n these concepts. More recently, he has
outlined a Socicty of Mind'’ architecture for cognition,
Cognition in this picture is a communicating collection
of modular-agents, each of whom 1s simple, but capable
of some degree of problem solving. For example, they
can use the means-ends heuristic (the goal-subgoaling)
feature of deliberation in the Soar architecture).

Deliberation has a serial character to it. Almost alt
proposals for the subdcliberative architecture, however,
use parallchsm in one way or another. Parallclism can
bring a number of advantages. For problems invohving
similar kinds of information processing over somewhat
distributed data (like perception), parallclism can speed
up processing. Some problems that require explicit
scarch il done serially can be done without search in g
paralle] architecture. For example, pereeption problems
often 1nvolve evaluating 2 number of alternatise
interpretations and choosing the best. These alterna-
tves can be simuftancously assessed 0 parallel and the
best picked. Ultimately, however, additional problem
sobving in deliberation may be reguired for some tasks,

Within the school that views the subdchberatne
archiecture  as  representation-prawessing,  there  has
been a debate abopt the medium i which miornuition
s represented. Turing computational architecunes have
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been the representational frameworks ol choice for
modeling deliberation, For subdeliberation, the same
[rameworkh was used until connectionism came along.
Connectionism replaced the explicit processing of
symbolic tokens with a spectfic type of analog
computation. The original connectionist proposal of the
PDP type® were in some ways less powerful than
Turing machines. For example, it had to face the
criticism that that kind of computation cannot account
for the systematicity and generativity of natural
language which requires variable binding and symbols
of some type'®, requirements which the Turing-
computational framework can handle well. A number
of ways of enlarging the connectionist frameworks to
give them these capabilities have been proposed. Some
involve using e¢xplicit symbols in connectionist repre-
sentations (see for example, ref. 19), while others involve
representations that have some of the properties of
symbols without being symbols in the Turing-computa-
tional sense (see for example, ref. 20). In any case, most
of these connectionist proposals are actually imple-
mented and simulated 1n digital computers, and none of
the functions that they compute are outside the Turing
framework. The problem does not really seem to be
with Turing computation per se, but rather the way in
which Turing computation has been used in Al and
cognitive science, namely as applications of inference on
axiomatically represented world knowledge.

Connectionism has been evolving in a number of
directions. A proposal that has been gaining currency 18
that the information processing of the brain 1s a
dynamical system?' defined by complex nonlinear
differential equations. It has been claimed, for example,
that chaos may be useful as a creative device for new
states in a search??, and that dynamic systems at
criticality have the unbounded dependencies characteri-
stic of context-sensitive grammars>.

Edelman argues strongly against information pro-
cessing theories of cognition on the ground that they
require a prelabeled world of objects and reiations,
whereas biological orgamisms in his wview discover
patterns as regularities in their interactions with the world
rather than start with prelabeled information. He also
argues against connectionism since he thinks they
require some form of prelabeled information as well.
His architectural proposal is not couched as computa-
tion on representations, but as one in which successful
neural pathways are selected in a process similar to
Darwinian evolution. The selection is done in response
to the physical interaction of the organism with the
external world. This process results in neural structures
which categorize the organism’s interaction with the
world, but these are not fixed logical categories, bul
flexible, constantly changing ones, to reflect the
organism’s continuing interaction. Edelman has proposed
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additional mechanisms by which these structures
develop higher and higher order categorizations and
coordinations.

The motivation behind conpectionism and its
offshoots 1s generally couched as opposition to
symbolic computation, and Edelman argues against
information processing, but, as we have argued earlier,
the rcal opposition seems to be to the idea of a
representational repertoire that corresponds to the
theories of the external world of objects and relations
that we conceptualize in our conscious models of the
world. There 15 a widespread suspicion that Al and
cognitive science have confused the externally visible
constructions of mind (explicit knowledge of the world,
grammars, ¢tc.) as the raw material of mind. In this
view, Just because we seem to be using pieces of
knowledge 1n our deliberation does not mean that this
knowledge was represented in that form in memory.
The phrase ‘information processing’ has been too
closely associated with the view that what 1s inside the
mind is much like what we seem to have in our
consciousness. The opposing view is that whatever is
inside us is not in the form of abstract statements of
facts about the world, but rather is concretely tied to
our interaction with the physical world, flexible, open-
ended, and constantly changing with each interaction.

With this proviso accepted, we can take a representa-
tional stance towards connectionist networks as well as
Edelman’s selection machine. In that sense of attributed
information or knowledge that we argued for in our
discussion of the coin-sorter, Edelman’s organism has
knowledge and information. We can, from outside,
watch an Edelmanian brain at some point in 1ts
evolution, and say things like, “This organism knows
about x, but not about y.” In the broad sense of
information processing that we have been advocating,
Edelman's organism is an information processing agent
and its neural pathways represent knowledge. If
knowledge of the world can be in the form of on-going
abstractions of experience, which at the Knowledge
Level, can be interpreted as partial, but increasingly
more veridical, knowledge of the world, then ail these
approaches qualify as information processing theories.

Is there a ‘right’ architectural theory of subdelibera-
tion? Later in the article we discuss how to place the
various alternative proposals in useful relations to each
other.

So far we have talked about the micro-architecture of
the subdehberative system. A few brief comments on
macro-architecture are relevant. Fodor?* has proposed
the Modularity Hypothesis which asserts that there are
separate modules for each of the perceptual modahties,
the language modality and central cognition. That 1s,
there is relatively little interaction between them until
the perceptual and language modules have completed
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their interpretation tasks. These interpretations are
available in the working memory of deliberation. There
is some debate about how much information flow is
there from one modality to another during recognition,
but there 1S general consensus that the degree of
intermodality information flow is small in comparison
with the information processing within each module.

Situated cognition. Real cognitive agents are in contact
with the surrounding world containing physical objects
and other agents. A new school has emerged calling
itself the situated cognition movement which argues that
traditional AI and cognitive science abstract the
cognitive agent too much away from the environment,
and place excessive emphasis on internal representa-
tions. The traditional internal representation view leads,
according to the situated cognition perspective, to
excessive amounts of internal representation and
complex reasoning using these representations. Real
agents simply use their sensory and motor systems to
explore the world and pick out the information needed,
and get by with much smaller amounts of internal
representation processing. At the minimum, situated
cognition 1s a proposal against excessive ‘intellection’.
In this sense, we can simply view this movement as
making different proposals about what and how much
needs to be represented internally. However, there are
more radical versions of the movement in which any
internal representation s denied. Specifically, the
movement rejects the idea that knowledge is represented
in the brain and retneved as needed, but instead holds
that knowledge 1s constructed by the agent in a
complex interaction between neural processes and the
external situation. ‘[Representations] are the product of
interactions, not a fixed substrate from which behavior
is generated’?®, The reader will recognize that this view
is close to that of Edelman. This constructivist view of
knowledge is a major dividing line between traditional
‘knowledge representation’ view in Al and the situated
cognition view, To take an example, schema theories in
psychology and frame thcories in Al have held that
memory is organized in terms of schemas, stercotyped
concepts or events. The newer view would hold that
such schemas are actually constructed in response (0
the situation, not untts of memory representation and
organization?®.

In our discusstons so far, we have presented two
different views on internal representations. On the ong
hand, we have rcpresentations in the traditional Al
sense of explicit encoding of facts and so on, and on the
other hand, we also said that one can often take an
external Knowledge Level stance towards the content
of knowledge that is implicd by an agent's behavior.
The situated cognition perspective clearly rejects the
former view with respect 1o internal (sub-dehiberative)
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processes, but accepts the fact deliberation does contain
and use knowledge. Thus the Knoiledge Level
description could be useful to describe the content of
agent’s deliberation. But the perspective emphasizes the
issues relevant to the nature of the neural level
descriptions and the processes which work with the
cxternal situation to construct the representations in
dehberation.

The movement raises many important issues, but the
solution to the problem of what sort of neural processes
exist and how the interactive process constructs
representation is still in the future.

Integrating the perspectives

An integrated view of problem solving. We briefly
outline how the major components of the cognitive
architecture work together in the solution of complex
problems. The agent is embedded in the physical world,
receives sensory mmformation, and acts on the world.
Deliberation is the central co-ordinating architecture,
and 1ts working memcry can contain both symbolic
and 1magistic data, constructed out of long term
representations in response to the goal at hand, as the
situated cognition movement proposes. Memory can be
viewed at the Knowledge Level as containing this
information, but this tatk should not misiead one into
thinking that the mlormation that is in working
memory was in that form in long term memory (see our
discussion on situated cognition). The agent also has
action repertoires which can be thought of as a form of
memory, but information representational talk is much
less approprate for describing them.

The degree of abstract problem solving required
depends on the kind of goal. Many goals can be simply
solved by means of one or more of the action
repertoires, with little mediation from anything that
one mght call problem solving in the sense of
mamipulation of representations of choices in a search
space. The goal-action-sensory system triple is highly
evolved and integrated to carry out, in a goal-driven
way, such action sequences.

When such action sequences are not immediately
available for the goal, there are a number of options.
Working memory may contain abstract representations
of problem space alternatives. The problem space and
the operators available may have not only abstract
symbolic components, but imagistic components as
well. Working memory may also contain previously
developed sequences of solutions or pointers to external
methods, algorithms, or models, Some of the subgoals
are best accomplished by action sequences, some by
operators that are specific to the tmage modality (e g
reasoning with mental images), some by appheation of
abstract knowledge operators, and seme by invoking
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external agents and models. Many of the subgoals can
be accomplished just by interacting with the world or
sensing the world rather than by reasoning on complex
representations. A common way of avoiding complex
reasoning is to lcave representational markers in the
physical world, and use action and sensory operators to
‘read off' the information.

The above description emphasizes how much of real
problem solving is dominated by the fact that the agent
is situated in the world, and how artificial a pure
symbolic representation manipulation view can be for
many problems. At the same time, the above picture 1s
admittedly schematic. A number of important issues
remain unsolved. We already referred to the problem of
the mechanisms by which knowledge 1n working
memory is constructed in response to goals. How the
sensor-action system is integrated with deliberation 1n
an abstract sense requires many details to be worked
out, but it sets a research agenda that is different from
that of traditional Al

Content-driven AI and microstructural accounts are both
needed. In a sirange way. the perspective we just
outlined validates both traditional Al and the new
emphasis on microstructure. Traditional Al, with its
emphasis on knowledge and the distinctions needed to
express it, has tried to wrestle content down. It has
been able to do this pretty well up to a point, but
because it is not embedded in a theory with appropriate
microstructure and environmental interaction, ends up
over-idealizing content and missing the form in which
knowledge really emerges. The mucrostructural accounts
have potential to explain the genesis and evolution of
knowledge, and, to the extent that they base themselves
on some aspects of biological neural systems, can
explain aspects of continuity in cognition between
higher animals and humans. It 1s also often hoped that
the content problem in Al can be solved by Al systems
that learn from scratch or with hittle imtial knowledge.
That 1s, the hope is that learning will obviate the need
to develop knowledge level distinctions. That seems
highly unhkely for reasons of complexity, both in time
and in the environmental specification, but also due to
the need for specifying appropriate initial states. It is
more likely that the learning theories will give broad
insights about content that might place useful constraints
on knowledge level theories. Thus the content-driven
Al picture and the microstructurc-drniven new archi-
tectural views need to work side by side for quitc a
while, hoping 10 meet 1n various ways and places for
mutual benefit.

Hierarchy of leuky architectures and cognitite explana-
tions. We have mentioned connectionmism, dynamical
systems, and Edelman’s selection machine as three
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contending proposals for the subdeliberative architec-
ture, and no doubt there will be many others over time.
But to look for a ‘correct’ answer to the cognitive
architecture may be to commit an error in reification, in
believing that there exists one architecture that can be
factored off the physical brain in such a way that the
architecture corresponds to and only to cognition {or
more generally mentality). In the introductory section
on dimensions for thinking about thinking, we
discussed the problems associated with factoring off a
cognitive architecture from a mental architecture. A
sunilar 1ssue arses in the belief that a mental
architecture can be factored off the physical brain or
the body, and that a clearly defined set of functionalities
can be identified to define mind. What we have in the
brain is a biologically evolved complex piece of matter
working at many levels, informational, chemical and
glectrical. Certainly different stances can be taken
towards it for different analytical purposes, but
believing that there exists a separable architecture
called the mental, especially one that has a description
at one level, may be Platonism run amok.

If this view 1s right, then we can see the contending
proposals for the subdeliberative architecture as
approximate descriptions, at somewhat different levels,
of a physical reality called brain, which in turn is the
basis for a host of behaviors that have a mentalistic
description.

Consider the mathematical description of an economy
in a human society. It would be strange to regard the
economy as the reality which just happens to be
implemented on humans. Description of an economic
model is an approximate description of certain types of
activities 1in -human society. This is the analogy that we
would like the reader to keep in mind as we describe
our view of hierarchy of cognitive architecture
descriptions.

In this view, the Edelman selecion machine 1s a
convenient and approximate description of a machine
which is really a complex chemical machine. At a
higher level, dynamical systems provide another
approximate description, with connectionist descrip-
tions providing yet another level of description. We
think that when the selection machine organizes itself
to perform some task, say perception, it should be
possible to see 1n it a description of evidences being
combined, the language in which connectionism works.
At the top level we have the knowledge Ilevel
description of the agent in terms of knowledge and
goals. Each of these descriptions captures some aspects
and functionalities, but misses others.

However, this picture of virtual machines all lined up
vertically, the dehliberative architecture on top of the
recognition architecture on top of, say, a dynamical
systems architecture which 1in turn 15 on top of
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something else and so on all the way down to chemistry
and physics, might give a false picture of perfect
implementations of a higher level by a lower level
Biological brains do not really have cleanly lined up
architectures in the way that computers do. In artifacts
like computers, we as designers have conceptualized a
pure information processing machine and have created
a complete one-to-on¢ correspondence between the
elements of that and the elements of a physical
machine. Except when the machine malfunctions we
never have to worry about the lower level machine. In
computer software design each level of architecture,
each virtual machine, sits cleanly upon the one beneath
it without the one beneath 1t showing through at all
Each level is smooth and closed and separate with
respect 10 other levels of the architecture. This sort of
architectural arrangement has guided much of our
thinking about human cognitive architecture.

However, in a biologically evolved object like the
human brain such a clean separation between levels of
architecture and between software and hardware s
impossible. This is because, first of all, these archi-
tectures we have been describing are all ‘leaky’ virtual
machines. That 1s, when the surface structures are
stressed, or under certain situations, the underlying
machine shows through. There are layers of representa-
tional structures and representations from other layers
pcak through at any given layer. Like 1n the case of
vision, where in certain optical illusions the physical
structure of rods and cones shows through the
interpretive architecture, the architecture of the under-
lying machines Iiterally shows through in certain
circumstances. The cognitive phenomena are thus not
all going on at one level of architecture. Secondly, these
layers of architectures are not complete, i.e. each level
of description does not fully account for all the
phenomena of mnterest. Given some complex mental
activity, explanation of some aspects can be given by
the Knowledge Level, for some we will need to appeal
to the properties of the connectionist architecture, for
some to the properties of the selection machine, and for
others we may simply nced to appeal to chemistry and
other physical properties.

What description we use to account for the
phenomena depends upon our goals. The copmtive
phenomena we are looking at are not going to admit of
any single level of explanation. They are very multi-
dimensional, and for some purposes we can account for
the behavior by referring to the deliberative machine,
but for other purposes that will not do, and we will
have to account for the behavior by reference to a
lower level of the architecture. This means that the
information processing  architectures  that  we  sce
undertying human cognitive bechavior are architectures
that we have abstracted for certain classes of purposes.
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This ts not to espouse a form of relativism, however.
Not everything counts. There are lots of machines that
could not be brought up as virtual machines by the
brain. Interestingly, all the virtual machines that we
considered, from Soar to connectionist systems to
Edelman’s path sclection machines, have a specal
feature: they all are oriented towards adaptation and
learning. Thus, there is a relationship between learna-
bility and being capable of being a virtual machine of
interest. There are facts of the matter to be investigated
and discovered. We can ask of a proposed virtual
machine, what work does it do? How is 1t useful as level
of explanation? We can also ask of a particular task
how 1s 1t being done? What sort of architecture is being
used to accomplish 1t? Although we can potentially
model each individual function of cognition, there may
be no abstract platonic engine which accounts for all
and only cognitive, or all and only mental, behavior.
There may well be just various cognitive functions and
various machines that can be used to explain those
functions.

Concluding remarks

We started by asking how far intelligence or cognition
can be separated from mental phenomena n general.
We also suggested that the problem of an architecture
for cognition is not really well-posed, since, depending
upon what aspects of the behavior of biological agents
are included in the functional specification, there can be
different constraints on the architecture. That 1s, 1t is
not clear that, from an architectural perspective, the
idea of a .cogmitive architecture is a natural kind.
Nevertheless, we said, we can talk about cognition as a
coherent phenomenon of interest if we think of it as
that behavior in which we ascribe knowledge states to
the agent. Newell's Knowledge Level view of an agent is
based on a similar point of view about a cognitive
agent.

We reviewed a number of issues and proposals
relevant to cogmtive architectures. The computer
metaphor has had its day, but, we argued, the
information processing language has significant expla-
natory powcers left. We ended with the powition that the
search for an architectural level that will explain all the
mteresting phenomena of cognition was likely o be
futtie. Not only are there many levels cach explaining
some aspect of cognition and mentahty, but the {evels
interact even in relatively simple cognitive phenomena,
Ultimately even physics will account for some mental
phenomena.

By treating mientality, not to spedh uf s cognitne
component, as uliimately not {ully acparable from the
physical substrite, we sire not bamg possimistic aboul
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the prospects for cognitive science and Al, just being
careful about what one might expect. la one sense, this
view rcinforces the arguments for the need for
grounding?’, and being and growing as real humans, as
the ultimate requirement for achieving the kind of
mentality that we have. On the other hand, explana-
tions of all sorts of mental phenomena can come at
vartous levels. We can build problem soivers, perceivers,
cognizers and so on, and depending upon their physics
they may have their own version of mentality. There is
no need for Al or cognitive science to insist on the
various Separability Hypotheses being true in all details
for getting necarer and nearer to the goals of
explanation and simulation of mind.

1. Seacle, I. R., Minds, brains and programs, Behgy, Brain Sct,, 1980,
3 417424,

2. Edelman, G. M., Neural Darwinism: The Theory of Neuronal
Group Selection, Basic Books, New York, 1987,

3. Edelman, G. M., The Remembered Present: A Biological Theory of
Consciousness, Basic Books, New York, 15989,

4. Newell, A., Unified Theories of Coygnition, Harvard University
Press, Cambndge, MA, 19%0.

5. Dennett, D., The Intentional Stance, MIT Press/Bradford Books,
Cambnidge, MA, 1987.

6. Rumelhart, D. E,, McClelland, J. L. and the PDP research group
(eds), Paralle! Distnibuted Processing: Essays wn the Microstructure
of Cognition, Foundations, MIT Press/Bradiord Books, Cambndge,
MA, 1986,

7. Putnam, H., Representation and Reality, MIT Press/Bradford
Books, Cambnidge, MA, 1988,

8. Dreyfus, H., What Computers Cannot Do: The Limits of Artificial
Intelhigence, Harper and Row, New York, 1972.

9. Schank, R. C, Dynamic Memory: A Theory of Reminding and
Learning in Computers and People, Cambndge Unsversity Press,
New York, 1982

10. McCarthy, J. and Hayes, P. §., Some philosophical problems from
the standpoint of artificial intelhgence, Machine Intell, 1969, 6,
133-153.

1. McCarthy, J., Circumscription: A form of non-monotonic
reasoning, Artlf. Intell, 1980, 13, 1-2, 27-41.

12. Newell, A. and Simon, H, Human Problem Solvuing, Prentice-Hall,
Englewood Clifls, NJ, 1972,

13. Patten, T., Geis, M. and Becker, B, Toward a theory of
compilation for natural language gencration, Commat. Intell, 1992,
8{1), 77-110.

14. Chandrasckaran, B., Roles of logic mm Artificial Intelligence,
Vivek: A Quarterly in Artificial Intelhgence, Nalional Centre for
Software Technology, Bombay, 1991, 4(2), 13-15.

15. Chandrasckaran, B., Geneng tasks in knowledge-based reasoning:
high-level building blocks for expert system design, JEEE Expert,
1986, 1(3), Fall, pp. 23-30.

16. Minsky, M., A framework for representing knowledge, The
Psychology of Computer Vision (ed. Winston, P. H.), McGraw
Hill, New York, 1975, pp. 211-280.

17. Minsky, M., The Society of Mmnd, Simon and Schuster, New
York, 1986.

18. Fodor, J. A. and Pylyshyn, Z. W., Connectionismm and coghitive
architecture: A critical analysis, Cognition, 1988, 28, 3-71.

19. Shastri, L., Connectionism and the computational effectiveness of
reasonung, Theor. Ling., 1990, 16(1), 65-87.

20. Pollack, J. B., Recursive distributed representations, Artif. Intell,
1990, 46(1), 77-105.

21. Pollack, ). B., Review of Unified Theones of Cognition, in Artif,
Inteil., 1993, in press.

22, Skarda, C. A. and Freeman, W. J, How brains make chaos in
order to make sense of the world, Behav. Brain Sci,, 1987, 10,
161-195.

23. Crutchfield, J. P. and Young, K., Computation at the onset of
chaos, in Contputation, Entropy and the Physics of Information (ed.
Zurek, W), Addison-Wesley, Reading, MA, 1989.

24. Fodor, J. A, The Modularity of Mind: An Essay on Facuity
Psychology, MIT Press/Bradiord Books, Cambnidge, MA, 1583,

25. Clancey, W. J. and Roschelle, J, Situated cognition: How
representations are created and given meaning, Technical report,
Institute for Research on Learning, Palo Allo, CA 94304, USA,
1991,

26. Iran-Nejad, A., The schema: A long-term memory structure or
transient functiona! pattern, in Understanding Readers’ Under-
standing: Theory and Practice (eds. Tiemey, J. et al), 1980,
Lawrence Erlbaum, Hillsdale, 1987.

27. Harnad, S., The symbol grounding problem, Physica, 1990, D42,
335-3466.

ACKNOWLEDGEMENTS. B. Chandrasckaran’s work in the
preparation of this paper was supported by US Defense Advance
Research Projects Agency via contract F-49620-89-C-0110, moni-
tored by Air Force Office of Scientfic Resecarch. We thank Tom
Bylander, John Josephson and Jordan Pollack for therr comments on
a draft of this paper, and Prof. Narasimhan for the inwvitation to write
this article.

384)

CURRENT SCIENCE, VOL. 64, NO. §, 25 MARCH 199



