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Visualization of three-dimensional data
by ‘volume rendering’

N. Ramesh and G. Athithan

Advanced Numerical Research and Analysis Group,
P. O, Kanchanbagh, Hyderabad 500 258, India

We report an implementation of a ray-tracing method
for visualizing volumetric data. For evaluating the per-
formance of the implementation, we consider the
visualization of two classes of volumetric data. The first
consists of the probability density functions of a subset of
states of an electron in hydrogen atom and represents the
case of visualizing data derived from analytical expre-
ssions. The second class of volumetric data is a set of
three-dimensional fractals which are generated over
regular three-dimensional cartesian grids of various sizes,
The motivation for generating and visualizing the fractal
data sets is two-fold. Firstly a fractal data set is a good
test input to verify the correctness of the implementation,
Secondly, we want to model stellar clouds and see how
they can be visualized. Clouds are known to be akin to
fractal data sets and we find that the volume rendered
images of these data sets bear a close resemblance to
stellar clouds. Ray-tracing is computationally expensive
and we therefore report the CPU timings for a
representative set of images. General comments on the
utility of this method for visualizing in various disciplines

conclude the paper.

REPRESENTATION and visualization of data in a graphical
form is a practice as old as experimental science.
Whether it is an array of numbers or a2 mathematical
function, a graphical plot of the same gives better
insight. However, before the advent of computer
graphics, on¢ was limited to visualizing the relation-
ship between just two variables in a graphical form.
Vizuahzation of any relationship among three variables
usually called for highly skilled draftsmen and that
among four variables was out of the question. With the
application of computer graphics, the problem of visua-
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lizing trivanate relationships has been solved In a
number of ways. The key task in all the solutions is the
hidden element (line, surface) removal. Currently, one of
the main preoccupations in computer graphics is to
represent and visualize relationships between four
variables or what 1s more commonly known as
volumetric data visualization. The data set to be
visualized comes in the form of scalar values af each
point of a regular or irregular, three-dimensional grid.
Our discussion here is, however, confined to.regular
cartesian grids. The values at the grid points may come
from an experiment such as magnetic resonance
imaging of human bodies or may be calculated from a
tfrivariate analytic function.

One of the standard methods of visualizing such a
grid of data 15 to construct surfaces inside the
volumetric grd, over which the scalar value remains
invariant. Such surfaces, commonly known as ‘isovalue
surfaces’ can then be visualized graphically by means of
various surface display techniques. A single isovalue
surface does not suffice to represent the entire volu-
metnc data, and so one may construct many such
surfaces simultancously, for different isovalues so as to
visualize them all together. Usually this approach
works when the data vary somewhat smoothly over the
grid. However, 1If the data are poor, noisy or vary
rapidly from point to point, then one finds spurious
additions or deletions from the isovalue surfaces. This
happens due to the binary nature of the classification of
the cells of the grid into those that are intercepted by

the isovalue surface and those that are not. False
negatives contribute to holes while false positives may
cause spurious additions'. To circumvent this problem,
researchers recommend the concept of “volume rendering’
wherein no intermediate geometric construction is
carried out’. In this approach screen images are
computed directly from the volumetric data by means
of ray-tracing. The main advantage of this approach is
that it generates a mechanism for extracting and
displaying weak or fuzzy features out of the volumetric
data. Here one can emulate the technique of isovalue
surface visualization without the problems of spurious
additions or deletions, as shown in ref. 1. Alternatively
one can render the entire volume of data as we demon-
strate below using two classes of volume data.

After a survey of the literature for a suitable
algorithm for volume rendering we chose to implement
the one suggested by Marc Levoy!., While he concen-
trates more on the isovalue surfice visualization by
means of volume rendering, our interest here is to carry
out entire volume visualization, We give a bricfl outline
of his mecthod, modified to suit our need, in what
follows. The interested reader may refer to his paper for
further details.

The basic input to the algorithm is a regular three-
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dimensional grid of scalar values. In case the grid is
irregular, it has to be transformed to a regular grid in a
separate preprocessing step. In the subsequent discussion,
the grid points are referred to as voxels {volume
clements) and the scalar value is referred to as intensity.
They are denoted by g, and f(g;;) respectively. The
algorithm has two functional stages. In the first stage,
all the gnd points are assigned a colour value C
(f=red, green, blue} (shading) and an opacity value «
(classification). Both the shading and classification
calculations depend heavily on the normal at that
point. In the absence of an explicit geometry, the
normal 1s computed from the intensity gradient using

of (gijk)
1of (9 i) ’

N (gijk) =

where the intensity gradient df(g;;) at g,, is computed
as

5f(§sf.r:)=[1/2 U(QHJ,}, J0 (g - 1, W
172 (flg:+ 1,j1k)_f(9;—1,j. )2
1/2 (f(gi+1,j,k]_f(gi—1.j, D]

The colour value C; at g¢;; 15 computed using the
following colour model.

Cp (gijh) =C; B ka5t C,, B [k, 2 (N (g, jk} L)
+ks.ﬁ(N (gijk)'H)n] ’

where, Cy(g;4) is the Bth colour component at voxel
location g;; ; C; 4 the fith colour component of the light
source at infinity; k, , the ambient reflection coeflicient
for fth colour component; k; ; the diffuse reflection
coeflicient for fth colour component; &, 4 the specular
reflection coefficient for fth colour component; Nig, ;)
the normal vector at g;;,, L the normalized vector in
the direction of light source; H the normalized vector in
the direction of maximum highlight and n the exponent
used in highlight approximation.

The highlight vector H is computed as

where 1738 the normalized vector in the direction of the
observer,

The opacity value of a voxel is a measure of its
transparency. A value of zero means the vovel 15 tully
transparent (and hence invisible) and one means it s
fully opague (thus hiding everything behind ith Values
between 0 and 1 mecan the voxel is tramslucent. For
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entire volume rendering the opacity value of a voxel is
assigned in proportion to its intensity value. This makes
the high intensity voxels more opaque {and hence seen
more) and low intensity voxels more transparent. That

1S,

X (gui) = (f{gut) _fmm) U-mal —fmm)

"~ and f,,. are the minimum and maximum
intensity values in the grid.

To avoid voxels having intensity value equal to f_
from becoming fully transparent (and hence not seen at
all), instead of using the complete unit interval [0-1] for
opacity value assignment, & sub interval within [0-1]

may be used. That 1s,

Here |

2 (g u)=p+ U}:::)_}f:n)

(¢ —p),

where 0<p,g < I, p<y.

Once the colour and opacity values are assigned to
all voxels in the volume, a beam of rays is sent parallel
to the eye vector through the viewing plane into the
volumetric grid. In this stage, a colour for each ray
is computed and the pixel in the viewing plane through
which the ray passes is assigned that colour. The
viewing plane is analogous to the screen.

Along each ray, the volume is resampled at K equally
spaced intervals. This interval is taken as the minimum
distance inside a cell bounded by eight voxels. Colour
and opacity value at a sample point are calculated by
trilinearly interpoiating from the e¢ight neighbouring
voxels that surround the point. Finally, a fully opaque
background (C,, ;) is draped behind the volume as the
last sampled point of all the rays. These colour and
opacity values along ray are denoted as Cy(R},) and
2(R},) and colour for the entire ray is denoted as
Cy(R,,). Ry, denotes the ray passing through (x,y)
position of the viewing plane and R}, denotes the ith
sample point on the ray R, From this array of colour
and opacity values, a single colour 1s computed per ray
by a process of compositing. More specifically, the
colour C 5 (R5,) of the ray as it leaves sample point i
is related to the colour C, 4 (R3) of the ray as it enters
that point and the colour and opacity values Cz(R}),
1(R},) at that sample point, by the transparency
formula

Cuut‘ﬁ{Riy}z Cmtﬂ{thp) (l — X (R;y)) + Cﬂ [Ri:p) x (Riy) .

For an array of sample values, compositing is done
by repeated use of the above formula, That is
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0
CB(R.:J;) = ‘ZK Cﬁ(Riy)a(Riy] _I__[ (1 -E(Rir))
j=

i=1—1

Note that the compositing is done in back-to-front
order (i.¢. from the background screen towards the eye).

After the implementation of the above algorithm, we
tried its utility in visualizing two classes of data. The
first one was the class of probability density functions
of an electron in hydrogen atom. The second class, a set
of fractals, was generated artificially over a regular grid
usinng the mid-point displacement method?. While the
former represents a multivariate relationship whose
form 1s analytically known, the latter is a case of
discrete samples of data akin to what one obtains from
numerical computations or experimental measurements.

It is well-known that the probability density function
of an electron in hydrogen atom is given by the square
of the modulus of the corresponding wave function
Y aum(r, 0, @). Here nlm denote the quantum numbers of
the state of the electron. In analytical form (ignoring
scale factors]

Vum(r, 6, 0)=Ce "2 F L2 L (1} PP (cos 8).e™°,

where L?%! and P are the associated Laguerre
polynomials and the associated Legendre polynomials
respectively. C is the normalization constant which is in
general a function of the quantum numbers. The factors
Pl (cos 8) ™ together constitute what are known as
the spherical harmonics Y, (6, ¢) which express the
angular dependance of the corresponding wavefunction.
For visualizing the electron probability density function,
the input data are obtained by computing [¥|? over a
regular cariesian grjd of points for a given triplet of
quantum numbers. Using the series expansions given in
Morse and Feshbach®* we could evaluate both L2341
and P"s without the need for computing large
factonals to compose the summands. The associated
Laguerre polynomials are given by

Liny=C;F(—plg+1lin,

where F(a|b|r), the confluent hypergeometric function
is evaluated using

., a ata+1)
F{albjry=1 +Er+2!b(b+lir

N a(a+1){a+2)
Wb+ 1)(b+2)

3+

For the associated Legendre polynomials we used

Py {z)=(1—2")"? T, (2),

CURRENT SCIENCE, VOL., 64, NO. 4, 25 FEBRUARY 1993



RESEARCH COMMUNICATIONS

where

_ nn—1) ,
2(2n+2m-—1)

n-'-2+

€, and C, are constants of proportionality which can
be safely 1gnored. With the help of the above
expressions, the probability density was computed over
a grid of size 50 x 50 x 50. The exact computation of the
overall normalization constant was omitted. Instead, a
suitable scale factor was found out by trial and error, so
that a substantial part of the density function would be
enclosed within the chosen volumetric grid. The

f 4 (Z)*":Czl:z"

nin—1)(n—2}n—3)
24(2n+2m—1)(2n+2m—3)

.
un
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resulting volumetric data were rendered by the ray
tracing algorithm over a screen window of size
120 x 120 picture elements, or pixels for short. Figure
| a shows the set of probability density functions for all
possible quantum states when n=6 and m is positive.
The view point is on the x-axis and the origin is the
view reference. In Figure 14, the same set of functions
have been volume rendered from a different viewpoint
{150, 150, 500). For the purpose of a structural compari-
son we also created images of the angular part of the
probability density functions, i.e. |Y, (0, ¢)}* with the aid
of a surface rendering program. These are shown in
Figure 1c.

The class of volumetric data that we tried to visualize
next, was gencrated by means of the mid-point
displacement technique. Employed for creating fractal
data scts, this technique is described by Barnsley et al

L

Tzle

=

Figure 1. 8, Entire volume rendering of all possible probability density
functions | , I* for n=6 and postive #. While ! varies from 0 to
n— 1 along the column, m vanies from 0 to § along each row. The axis
of symmetry is z and the viewpoinl s on the x-axis. b, Entire
volume rendening of the same functions as in &, seen from a different
viewpont (150, 150, 500). ¢, Surface rendering of the angular part
(| ¥ A0, )%} Of the Wb’ Tunctions shown in @ and & seen from (150,
150, 500)
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for the case o ot sl two dimensions ' rtended
therr algorthm i @ naturm manner for he case of
three dimensions, One of our moetivationt (o gencrate
fractal data ~c'~ over a three-dimennonal gnd was to
subsect our yeplemeniat 0 of Mare Levoy's algontam
te a good tent Besides we were alvwo hoping to create
cloud-hke images as a result of volume rendering a
fractai volumetne Jata set After expernimenting with

sarious values for the fractal dimensions we scttled for
a value of 37. For the standard deviation of the
Gaussan random additions to the mid-points we chose
a value of 10, while the mcan was set to be 0. Use of
different secds for the random number gencrator was
croploved to generate different fractal data sets. With a
vicw o creating some empty space in the gnd, a
suttable threshold value was subtracted uniformly from
the values at every point and among the resulting
values the ncgative ones were replaced by zeros.
To ward off some undesirable boundary effects, the data
were madulated by a decreasing ramp before threshold-
ing Frgure 2a was created using one set of fractal data
while Figure 2b using another. One cannot faill to
notice the resemblance between these images and stellar
clouds.

All the images were generated using the IRIS
workstation 4D 20. The demands on the computing
resources for rendenng volumetric data are enormous.
The summary of our observations with regard to the
computing times required for vanous cases is given in
Table 1. It may be relevant to mention here that the
LINPACK rating of the IRIS 4D,/20 workstation is

Fabie 5. CPU vmings for volume rendening the various test input
data descnbed in the test The tming for the probability densaty
functions refers to the case of .4 ,)?

Type of data set Grnid size Window size  Time (sec)

Probability 50 x 50 % 50 120120 335
density functions

Fractal sct-1 S xS » 65 2460 » 240 187

Fractal sei-11 65 £5 % 65 240 » 240 169

Fractal sct-11 129x129% 129 4RO =480 149 5

about 09 MFLOPS and the computations to be
performed in our implementation of ray tracing are
LINPACK-like. It may also be noted that it is the
floating-point computation speed of the system which is
crucial as against the graphic performance. One sure
way of speeding up the rendering is to use a parallel
computer. Since the ray tracing algorithm is easily
parallelizable, we are iIn the process of exploiting
PACE® type of parallel computers lor speeding up our
implementation; results will be reported later.

The need to visualize volumetric data, is met with in
a number of disciplines, crystallography and radiology
being two examples. In the former, one obtains the
clectron density distnbution within the unit cell of a
crystal to be studied. The volume rendering method
implemented by us will be useful in this case. Likewise,
the electron density distributions in crystals as obtained
from band structure calculations can also be visualized.
Indeed, such a visuahization would be particularly
useful when one repeats the calculation for various
values of the umt cell parameters and tries to see

256

Figure 2. », Image obtained by entire volume rendering of a three-
dimensional fractal data set, generated by the mid-point displacernent
method. The fractal dimension is 3.7. The size of the volumetric grid
is 129 129 x 129 and the wiidow is 480 x 480 pixels wide: &, Image
obtained for another fractal data set of the same dimension and siee.
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