earlier times (and originally disposed of as experimental error) seems to assume significance in the light of the above findings. A parallel line of argument has been advocated to substantiate the contention that, in computing the space group frequency tables on organics, all the space groups in their entirety need to be prevented and documented in terms of observed structures and their space group preferences. There is no reason to suppose that there will not be found eventually an asymmetry in the distribution of frequency preferences among chiral structures even among chiral space groups, although currently the data are inadequate to analyse and draw positive conclusions thereon.

The question of understanding what 'framed our fearful asymmetry' is thus not restricted to the study of geqen-eins alone but to a larger range of materials both organics and inorganics. The probability that life, if found elsewhere, is based on L-amino acids and D-sugars is sufficiently strong. It might be added here while the above observations are to emphasize the plausible and highly probable reasons for preference of L-forms of life on the Universe, the significance of the total synthesis of the D-protein and its implications as discussed by Petsko and Milton et al. are in no way diminished.

It may not be out of place to point out that Petsko's enunciation of condition of chirality (non-superposibility of an object over its mirror image) should read as 'lack of centre of inversion or mirror' and not include 'axis of symmetry'. Chirality implies automatically the presence of any n-fold rotation axis (including n=0, absence of any symmetry axis) and indeed is responsible for chiral behaviour in a large number of cases.


ACKNOWLEDGEMENT. I thank Dr. Karl Hardman, the DuPont-Merck Pharmaceuticals Co. for his interest and discussion.

R. SRINIVASAN

Department of Crystallography and Biophysics
University of Madras
Madras 600 025, India

Editor's note

Two recent reports describe the synthesis of enantiomorphs of proteins. S. B. H. Kent's group at the Scripps Research Institute, La Jolla has synthesized the all D analogue of the HIV-1 protease (99 residues), while L. E. Zawadzke and J. M. Berg of Johns Hopkins University, Baltimore report the preparation of all D rubredoxin (45 residues). This flurry of recent activity in the synthesis of all D proteins may have been stimulated by the rather enigmatic suggestion that present day synthetic methodology should be employed to produce racemic crystals of proteins, which would then occur in centrosymmetric space groups, resulting in a simplification of the problem of phase determination. Among the intriguing possibilities considered in ref. 1 are the probable absence of an immune response to all D proteins, the potential use of enzyme enantiomers in production of chiral fine chemicals and the therapeutic applications of a proteolytically stable D-enzyme that operates on an achiral substrate (cf. carbonanhydrase).

Finally, Srinivasan's correction (above) of Petsko's enunciation of the chirality condition is probably necessitated by an error where the phrase 'axis of symmetry' has been used instead of 'improper (rotation-reflection) axis of symmetry'.

4. For recent correspondence (and left handed comments) on this subject, see Science, 1992, 258, 1289-1290.

Poredam urn burial—A Chalcolithic culture

Prehistoric cultures in Kerala include the Palaeolithic, Mesolithic, Neolithic and Megalithic, and their occurrences have already been recorded from various places in Kerala. In recent years, since 1988, eight Megalithic sites, one Neolithic site and a Mesolithic site have been discovered from South Kerala. Two urn burial sites, discovered one each at Poredam near Chadyamangalam in Quilon district and at Chenkaltadam in Mulayalappuzha in Pathanamthitta district, have yielded child fossil bones from within the potteries. The other material cultural evidences obtained from Poredam consist of several red ware and maccusceous grey ware potteries along with a few number of small black-and-red ware pots and a few iron implements (Figure 1).

The fluorine test was carried out on the child fossil bones from Poredam. This test is often used for relative dating purpose. The element fluorine occurs in almost all groundwaters and is gradually absorbed in buried bones. The fluorine content thus increases with passage of time in the buried bones. Hence its amount is more in the older bone than that in the younger bone and its determination is useful for relative dating. Oakley suggested to compare fluorine/phosphate ratio which is expre-
Occurrence of giant Stegodon tusks from Narmada Valley, India

The present note records the occurrence of longest pair of *Stegodon namadicus* tusks from Dhansigahat (22°50'27": 77°52'00''), Hoshangabad district, Madhya Pradesh, India (Figures 1 and 2).

The Quaternary deposits of Narmada, Ganga and Godavari valleys, Saryamali area of Madras in Peninsular India as well as Pinjar Formation of Siwaliks, NW India have occasionally yielded the 'Stegodon' fossils in the past.

A new species of Stegodon named *Stegodon namadicus* was reported from alluvial quaternary deposits of Narmada valley in Dhansigahat, Hoshangabad district, Madhya Pradesh. Two fragmentary tusks detached from the skull; one tusk having a preserved length of 390 mm was reported. On 21 December 1991, from the said locality, an almost complete left tusk of *Stegodon namadicus* measuring 3225 mm in length weighing 137 kg and a broken right tusk measuring 1350 mm in length attached with part of skull with portion of molar teeth were found by the author, which were later excavated on 2 January 1992 under the guidance of S. Biswas of the Geological Survey of India. The tusks being highly friable were first wrapped in papers, cotton and then coated with plaster of paris to form capsules. These were then shifted to the District Archaeological Museum at Hoshangabad where plaster of par is, cotton and paper wraps were removed.