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How fast does a liquid evaporate?

P. N. Shankar

It is a surprising fact that the apparently simple and ubiquitous phenomena of evaporation and
condensation are still not well understood from a fundamental point of view. When an inert gas is
present in the vapour the phenomena are controlled by the comparatively slow process of diffusion.
W hen the vapour is pure, however, the very high mass flux rates are controlled by the kinetic effects
near the boundaries. Associated with the high mass fluxes, the theory predicts a controversial,
anomalous temperature distribution: the temperature gradient in the vapour opposes the applied
temperature distribution! While the associated jumps in the temperature at the boundaries have
been verified experimentally, the question of the anomalous distribution is still to be settled.

A nice thing about the phase change problem is that it
can be stated in plain English that everyone can
understand. And it is, in fact, i1 this way that I was
introduced to the problem 23 years ago by my advisor,
Frank Marble. As a graduate student I had gone to his
office to seek his suggestions for a problem to work on;
in response he asked me the title question. Say you
have a flat dish of hiquid in equilibrium with its vapour
and you suddenly raise the temperature of the liquid by
a few degrees, how fast will it evaporate? The answer to
this innocuous-looking question, one would 1magine,
should be in the textbooks. The problem appears to be
classical, the subject 15 cbviously one of immense
scientific and technological importance; so it should
have been solved a long time ago, probably as one of
my teachers, Lester Lees, said, by the great Maxwell
himself. But this was not so and to this day there are
features of the problem that are still not well
understood.

Before attempting to give a proper quantitative
framework for the phase change problem, let us first
recall, qualitatively, what we mean when we say that a
hquid and its vapour are in equilibnum and what
happens when this equilibrium is disturbed. The
equilibrium situation is shown in Figure 1. For equili-
brium to exist, the vapour temperature and the liquid
temperature have to he equal and the vapour pressure
p, has to equal the saturation vapour pressure, p¥, of
the hquid at that temperature, 7,. Note that even in
‘equilibrium’ the liquid-vapour interface is in a state of
flux with vapour molecules bombarding the liquid
surface and the latter ¢jecting vapour molecules which
have gained enough energy to break the bonds at the
liguid surface. All that can be said is that at
‘equilibrium’ the flux of molecules leaving the surface is
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equal to the flux bombarding the liquid and there is no
net flux of energy. Where the vapour i1s contaminated
by an inert gas the situation is a little different because
the two species have to diffuse through one another; at
equilibrium, however, the tempcrature of the inert gas
has to equal the hquid and vapour temperature, 7. As
before, there 1s no net flux of mass or energy.

Figure 2 displays the non-equilibrium situation that
occurs when the vapour temperature is not equal to the
liquid temperature or if the vapour pressure is not
equal to the saturation vapour pressure. In this situa-
tion the flux of molecules into the liquid is not ¢qual to
the flux leaving the liquid and there i1s a net mass flux
m, , positive if evaporation is taking place and negative
if the vapour is condensing. Note again, that if an inert
gas 1s present, the vapour molecules will have to diffuse
through the inert gas, slowing down the process
considerably. In general, of course, the vapour or
vapour—gas mixture could also be subject to convection
(‘being blown away’), shown in the figure by a velocity
U parallel to the liquid surface; this would enhance
mass transport. We shall only consider the simpler
situations shown on the left of Figure 2, where forced
convection is absent.
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Figure 1. The equilibrium situation.
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Figure 2. Non-equilibrium situations where phase change takes
place.

The gas mixture case

In some ways the gas mixture case is easier to
understand than the pure vapour case. This is because
the whole process is controllied by the rate at which the
vapour molecules can diffuse through the gas—vapour
mixture and this rate 15 small for any appreciable
fraction of inert gas present. It is for this reason, I
believe, that all the classical investigations were
restricted to the mixture case.

One of the earliest investigations was due, as
predicted by Lees, to Maxwell'. His analysis was based
on the assumption that diffusion was the controlling
mechanism, 1.e. the amount of vapour that evaporated
or condensed depended only on its ability to diffuse
outward or inward to the liquid surface. Thus for a
spherical droplet (Figure 3) if Fick’s law of diffusion is
assumed to hold and i I', is the total mass of vapour

Vapour + Inert Gas
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Figure 3. Lvaporanon from a liquid droplet of radws £y at a
temperature 7, .
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crossing a spherical surface of radius r,

r,=drt i, =~ D, L2, (1
where D, . is the binary diffusion coefficient and m, and
p, are the mass flux and density of the vapour. Maxwell
now assumed that p, took the value pf, corresponding
to saturation at the droplet surtace. Then equation (1)
integrates immediately to

r\f=rv0=4nrﬂ Dui (pt'—ﬂym ): (2)

giving a definite answer to the question of how fast the
liquid evaporates. Two serious shortcomings in Maxwell’s
analysis are (i) the mean motion of the gas and vapour
is 1gnored, i.e. the fact that if the vapour diffuses in one
direction the inert gas has to dififuse in the opposite
direction to keep the pressure constant and (i) the
assumption that p = p¥ at the liquid surface is a poor
one. Stefan® removed (i) and showed that if the mean
motion of the gas—vapour was included equation (2)
could be corrected to read

[ *
Mol | 142272 | ()
z(pvm+pim)

b

Note that the correction term s negligible if the vapour
partial pressure is small.

Objection (ii) regarding the assumption that the
vapour density at the liquid surface is equal to the
vapour density corresponding to saturation at 7y is
much more serious. This assumption is, in general, a
poor one because the non-equilibrium, kinetic processes
occurring close to—the surface cause rapid changes to
occur in the vapour concentration. This means that
close to the liquid surface one has to try to model the
kinetic (as opposed to continuum) processes, at least in
a crude fashion if one is to be at all realistic. Although
there were some earlier attempts, Fuchs? seems to have
been the first to correctly treat the kinetic or Knudsen
layer close to the liquid. Fuchs assumed, like Maxwell
and Stefan, that the continuum diffusion process was
rate controlling everywhere except in the neighbour-
hood of the droplet. But from the droplet surface to a
distance A, of the order of a mean-free path 4, the flow
behaved hke a free molecular flow, While the molecules
leaving the liquid were assumcd to have a pressure and
temperature  corresponding  to saturabion, no  such
assumption was made for the molecules coming into
the liquid from the surface at r=r, +A: mass alone had
to be conserved. Assuming also that the vapour
lemperature at r=r,+A was appronimately equal to
T,. Fuchs found, assuming that the accommodation
cocflicient wias unity, that the rate of exaporation way
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Although the above analysis is ad hoc in many ways,
equation (4) turns out 10 be a good approximation for
the rate of evaporation condensation provided the
small quantity of tnert gas that 1s needed is present fo
mahe diffusion rate controlling.

To obtain a more unified or rational picture of the
phenomenon one is forced to go to an honest kinetic
theory treatment®. Only in this way can we hope to
avoid patching on the Knudsen layer, in an ad hoc
manner, to try to model the liquid- vapour interface
correctly. In fact, the bquid-vapour phase change
problem is most naturally posed for the molecular
velocity distnbution function, not for the continuum
field. However, for the purposes of this general article, |
will try to show this only in the algebraically simpler
context of the pure vapour case. Just for the record 1
suggest ref. 5 as a more recent reference for the gas
mixture case.

Where the vapour is pure

When the vapour is pure, i.e. when the vapour is not
contaminated with an inert gas, we can no longer argue
that diffusion 1s the controlling mechanism in the bulk
of the {luid. Then what 1s the controlling mechanism? A
little reflection shows that what drives the flow i1s just
the pressure difference between the vapour pressure at
the liquid surface and that far away in the bulk of the
flurd. The mass {lux is, then, just controlled by the
normal hydrodynamic motion of a compressible {luid
subject to pressure and temperature gradients. The
liquid-vapour interface (see Figure 4), of course,
remains a complication. In this region the molecular

T —
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Liquid

Figure 4, The boundary conditions for the pure vapour, half-space
problem: Maxwellians and half-range Maxwellians,
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nature of the vapour and the kinetic nature of the
interactions between the incoming and outgoing
molecules cannot be ignored. In fact, the most
reasonable assumption that we can make is that the
molecules leaving the liquid leave with a temperature
and pressure equal to the liquid temperature T, and the
saturation vapour pressure p! at that temperature.
More specifically, in the language of kinetic theory we
assume that, whereas the full molecular velocity dist-
ribution function 1s known at infimity, only half the
distribution function is known at the interface, i.c.

n, exp{—£*/2R T,)

fy=0,0)= GrR. T &, <0, (33)
n¥ exp (—&%/2R, T)
Jy=0,0= GrR. T, ¢y >0, {(5b)
ne €xp(— cfz/'ZR,., T.,)
fly=c0,{)= (3¢)

{2 ?ZR ¥ TEJ }3!’2

In equations (33}, (5b), {5¢), f(y, &) 1s the distribution
function which specifies the number of molecules per
unit volume with velocities m the neighbourhood of £,
the ns aré number densities and the functions shown are
Maxwellians and half-Maxwellians. Note that we do
not know, a priori, the pressure and temperature at the
liquid surface since in equation (5a} n, and 7, ar¢ not
known. In fact, strictly, even the form (5a) cannot
be assumed in a correct treatment. I also want
to emphasize that in this simple model we have
assumed that the liquid surface is uncontaminated and
that the outward going molecules have the same
distribution as the equihbrium distribution at T|. The
problem then reduces to either solving the Boltzmann
equation for f{y, &) or for the gas dynamic field subject
to the boundary conditions‘™.

The first person to correctly solve the evaporation/
condensation problem was Marble® who assumed that
the usual inviscid, gas dynamic equations held in the
bulk of the field; in the neighbourhood of the liquid he
patched on a Knudsen layer, where the flow was
assumed to be collisionless (the region between 0 and 1
in Figure 4). Thus, in the main the equations of
continuity, momentum, energy and state for a steady
flow are

pv=n,, (6a)
S _dp 6b
f dy dy’ (6b)
ve dT*udp+kd2T 6
g Pdy dy dy*° (be)
p=pRT, (6d)
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where for simplicity we have dropped the subscript v
for the field quantities. The corresponding equations in
the Knudsen layer only involve equations (5a) and (5b)
and we omit them here. If, now, equations (6a) to (6d)
are hnearized and coupled to the Knudsen layer cal-
culation, the mass flux for small departures from
equilibrium can be shown to be given by the formulae

m, =0.145 pt CrnRTP? Ap/p.=0.287 p¥c  Ap/p, ,
(7)

where Ap=pf—p, and ¢, =(yRT{)'* is the sound
speed. This simple and beautiful formula tells us that
the mass flux corresponds to a flow with a velocity very
high compared to that in the diffusion-controlled case.
Moreover, the mass flux depends only on Ap and not
on AT=T;~T,

I have been a bit sloppy in deriving equation (7). In
the plane case considered here, a subtie point is that the
field can never be completely steady; the acoustic pulse,
generated when the liquid surface temperature is
suddenly changed never decays and has to be

accounted for, as Marble bnlliantly did, in order to.

correctly obtain equation (7). In the droplet case this
subtlety 1s absent as geometry kills the acoustic pulse!

A more rigorous treatment of the phase change
problem requires the solution of the Boltzmann
equation for the disiribution function f(y,&). An
advantage with this approach is that the Knudsen layer
does not have to be solved for separately. For the plane
case this was done approximately by a moment method
in refs. 7, 8 We only quote the final result

m ~(1/2n) p. 2R, T;)'? (Ap/p,— AT/2T})
as A/a— o0, (3a)

(5/6m)"° Ap
[(5/3)+(9n/8) (5/67)'*] p,

m,=p, (2nR, T )?

as Afa—0. (8b)

In the free molecule Iimit, A/a-» o0, the Hertz-Knudsen
formula® ! is recovered while in the continuum limit
Marble’s result® is recovered with the factor 0.145
replaced by 0.148. Observe that equations (4) and (8)
answer the title question for the gas-mixture and pure
vapour c¢ascs respectively.

Temperature jumps and the anomalous
temperature distribution

There is a personal element in the rest of this account. |
left the field of liquid-vapour phase change around
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1970 in the belief that the fundamental issues had been
clarified, the remaining work being merely a matter of
accounting for details and realistic complexities. So it
came as a real surprise to me when my colleague, M. D,
Deshpande, showed me in 1987 a sheaf of papers that
clearly indicated that some basic issues were still wide
open! In retrospect it is clear that tn my dogged
attempt to correctly compute the mass flux T had not
bothered to keep an eye on the rest of the gas dynamic
field, especially the temperature.

It was Pao!! who first pointed out that the
behaviour of the temperature in the evaporating/con-
densing field was most odd. Consider the pure vapour
case between two plane liquid surfaces at a distance H
apart. Let the temperature of the hot liquid be 7, and
the cold liquid be T,. It is then easy to show that the

temperature field in the vapour is approximately given
by

T =To+ [Ty~ Te)e”* - 1)] - 1), (9)

where 5=k/n?1cp 18 a characteristic thermal thickness
that depends on the thermal conductivity, the mass flux
and the specific heat of the vapour.

In equation (9) T, and T, are the temperatures of
the vapour at the hot and cold surfaces respectively.
Note that To# 7T, and T, #7T,; in fact the implicit
jumps are given by

To—To=T,—-T,=K(T,—T)=KAT, (10)

where K depends on the vapour {(or mixture properties).
In fact for a pure monatomic vapour

K>~(B+1)}9~L/9RT,, (11)

where L is the latent heat of vaporization. While K can
be as large as 2 for a pure monatomic vapour, it goes to
zero as y—1 (lLe. as the number of molecular internal
degrees of freedom increases) and as the contamination
increases. T he dramatic effects of the temperature jumps
at the boundaries are indicated in Figure 5. If K=0
there are no jumps and the temperature distribution is
normal with a monotonic decrease from the hot surface
to the cold surface. If K <1, the jumps at the interfaces
are there but the temperature distribution is st

| T
normal. But when K > the temperature distribution is

anomalous in the scnse that the gradient in the vapour
opposes the applied gradient. When K>1  the
temperature of the vapour at the hot hiqud surface is
actually less than the cold liquid temperature. This
behaviour is odd indeed; is it true, does 1t really happen?

It was to verify these remarkable predictions that
M.D. Deshpande and I set up in 1988, an experiment
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Figure 5. The eflects ol temperature jumps at the interfaces on the
temperature distnbution tn phase change between plane liquid
surfaces. The hot hquid is at a temperature T, and the cold liquid is

al a temperature T,.

with mercury as the working medium. This was a very
difficult experiment to carry out, involving a vacuum
system, a dangerous medium and a tricky measurement'”.
We were successful in capturing the jumps at the
boundarnies (see Figure 6) but could find no definite
evidence for or against the anomalous distribution. The
latter negative finding could be due to vapour or hquid
contamination, which are very important factors. On
the other hand, there may yet be a subtle flaw in the
theory. So the 1ssue 1s still open.

Epilogue

We see ram and dew so often; the steam from our
coffee, the cloudy mirror in the bathroom, not to say of
the phase change phenomena so critical to technology
as 1n condensers, turbines and combustors. It is
somewhat humbling to realize that this apparently
simple and universal phenomenon is still not fully
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Figure 6. Experimental determinalion of temperature jumps at the
interfaces. The thermocouple measurements were made in mercury
vapour at a pressure of around 0025 torr. The jumps are between

stations 3 and 4 and 9 and 14Q.

understood. On the positive side we can look forward
to continue testing some of our scientific tools in an
apparently simple setting; if we are lucky we will find
that nature has still a few surprises in store for us.
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