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Recent cosmological observations like the detection of
large scale streaming motion, APM and QDOT surveys,
detection of temperature anisotropy in the microwave
background radiation (MBR) etc., impose severe con-
straints on models for structure formation. The theore-
tical background for these models and the restrictions
arising from the observations are reviewed. In particular,
the COBE satellite results for the temperature fluctuation
AT/ =(1.1£0.2)x107° and (A7/1)o=(0.48 £0.15)
x10-3 are consistent with a scale-invariant spectrum, of
density perturbations o (R)=(R,/R)* at large scales with
R,~(239+2.1)h ! Mpc. This is consistent with APM
data and large scale streaming velocity measurements (both
of which require ¢ (50 5~' Mpc)~0.2) provided the scale-
invariant spectrum is extrapolated from 30005~ Mpc to
50 5! Mpc. Comparing the shape of o(R) at R<60
h™' Mpc, determined from galaxy surveys (IRAS, CfA,
and APM), with the COBE result, we find that a relatively
rapid bend in o (R) around R = (40— 60) s~ ' Mpc is needed.
The fact that COBE results match with galaxy survey
results at S0 A~ ' Mpc suggests that biasing is not significant
at R>50hA""Mpc. On the other hand a CDM spec-
trum, normalized to the COBE value, will overshoot galaxy
survey results at small scales. Such a spectrum can be
consistent with observations only if the biasing varies with
scale and h<1 at small scales. The implications of this
result are discussed. *

1. Introduction and scope

OBSERVATIONS suggest that our universe 1s homogeneous
and expanding at scales larger than about 100A~! Mpc.
At smaller scales, however, there exist several kinds of
inhomogeneities in the form of galaxies, clusters and
superclusters, It seems reasonable to model such a
universe along the following lines: We assume that the
universe was smoother in the past but contained small
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density inhomogeneities. The gravitational attraction of
overdense regions will then make the density inhomo-
geneities grow, thereby eventually producing the struc-
fures we see today. Several variations on this theme are
possible and have indeed been tried out in the literature.
It is probably fair to say that: (i) There is considerabie
evidence supporting the basic idea that structures have
formed through gravitational instability; but, (ii) we do
not have today any comprehensive model for structure
formation which does not run into serious difficulties
with regard to some observation or the other.

One of the reasons for this—rather dichotomous —
situation 1s that observational data relevant to structure
formation have improved tremendously in recent years.
There exist sufficient data to guide model building and
theoretical speculation and there is sufficient scope —in
the near future—to test reasonable predictions from
the theories. This review attempts to highlight this
Iinterplay between some of the crucial observations and
models for structure formation. I have tried to present
the observations in a unified manner so that maximum
amount of mformation can be extracted from them.
Since all simple models have failed to explain the
observations adequately, it is probably best at this stage
to try to identify the essential features of a future model
which has a reasonable chance for explaining the
observations. Such an attempt will clearly be pheno-
menological; but it is indeed gratifying that the currently
available data allow such an attempt to be carried out
to its completion.

In order to kecp the review to a reasonable length, 1
had to Iimit its scope in several ways. To begin with, |
have avoided all dctailed derivations, whenever such
material 1s available elsewhere (a detatled discussion of
many of these topics can be found tn references i, 2). 1
have also not attempted to discuss the technical details
and statistical significance of observations except when
they are crucial to argument, The growth of perturba-
tions in the nonlinear regime 1s discussed at a more

379



REVIEW ARTICLES

detarled level than is usual in such a review, This s
done because 1 feel that this arca has not been explored
it the Iiteralure to the extent it should have been.

2. Theoretical background

Nodels for structure formation which are based on the
concept of grarvitational instabibty contain three basic
ingredients in their make up: a background Friedmann
model desenbing the smooth universe, a mechanism for
generating the tnitial perturbations in this universe and,
finally, a mechanism [or amplifying these seed pertur-
bations. We begin by summarizing each of these
ingredients.

21 The background Friedmann model
The background model can be charactenized by a

number of parameters, which, for our purpose, may be
taken to be the following.

{1} The expansion rate is determined by the Hubble
constant at the present epoch, Hy=H(t,)=(d/a)=
100 h km s~ !, where a(f) is the expansion factor and

1=1, is the present moment. Observations suggest that
0.5 <h<i.D.

(1) The energy density is specified using a density
parameter, (2, defined to be Q=[p (t,)/p_1. where p(tg)
is the total energy density today and p =(3 H;/8rG)
=188 x 1072 h?gem ™3, Observations® suggest that
0.2 < Q<3 We shall make the choice of =1 when the
result does not crucially depend on this assumption;
when it does, we shall be careful to indicate the €2
dependence. There are several theoretical reasons to
favour the value of Q=1 though there is no compelling
observational reason for this choice. This choice,
however, makes the mathematical analysis quite simple
in several cases.

(1n} We also need to specify the compositton of matter
in the universe today. For our purposes, 1t is sufficient
to specify the ndividual density parameters for the
radiation {€g), vacuum-energy (L1 , ), baryons () and
nonbaryonic dark matter (Qpy). The radiation density
includes contribution from all the particles which are
relativistic today {photons, massless fermions, et¢.) and
are governed by the equation of state pg=(1/3}pp. The
vacuum density is contributed by any component which
has the equation-of-state p = —p . ; in particuiar, a
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cosmological constant will fall in this class. The
baryons and nonbaryonic dark matter can be treated as
pressure-free dust with the equation of state py = ppy=0.
Obviously, we must have Q=0Q,+Q _+Qs+0..
Observations™* suggest that: {z) the photon comribution
Q, to Q is Q,=256x10""h"% (b) 0.011<Qyh?
<0.037; and {¢) Qpy > 0.2. There 15 very little handle on
the value of Q.. The bounds (b) and (¢) together imply
that the dark matter must have a nonbaryonic
component. For concreteness, we shall assume that the
dark matter (at least, part of it} 1s made of elementary,
weakly interacting, neutral fermions of mass m.

Given these parameters ong¢ can construct a back-
ground Friedmann model. As an example, consider a
model with Qp» Qg (say, Qpy=0.9, Q,201), Q =0
and Q,=Q . The evolution of such a model will
proceed along the following lines: During the very early
phases of the evolution, the universe will be radiation-
dominated with a(f) oc t¥%. A transition to a matter-
dominated phase will occur at the redshift of zx~z_ .
where (1+2,)=(Qpy/Qr)=3.9%10°Qh% (For > s
the form of a(r) depends on the value of Q. If (3=1,
then a(f)oct?3; this is a good approximation for z>
{00 in all models) Notice that, since €py» €y, the
dominant energy density at z <z, is due to dark matter
and not due to baryons. The baryons and the electrons
will be strongly coupled to the photons at this epoch
Somewhat later in the evolution, at z>~z, with z,.
~ {100, the electrons and nuclet wall combine together
to form neutral atoms of hydrogen and helium. The
photons will decouple from matter at this epoch and
will propagate thereafter with negligible scattering. The
structures like galaxies etc. will form significantly later
al zKzZ ..

The gvolution can be different if Q, is significant. As
a second example, consider a universe with A=0.7,

Q=1, Qg=003, Q,,=0.17 and Q. =0.8. In such a
madel, (Pom/Py,d=0.25(1+2)° so that for zxz =~

0.59 the vacuum energy (‘cosmological constant’}) domina-
tes over matter. For z<<zeq~_~230{}, the expansion factor

will evolve as a(t)=(QpwQ. )" sinh?* 3. /Q,,. Ho t/2).
The ‘age’ of such a universe will be larger than a model
with Q=1, Q_ =0 at all redshifts, (For exampie, t,=
.1 Hy' for this model compared to 0.667 H; ' for the
Q...=0 model) Such models ¢an, sometimes, help to
overcome the difficulties in more conventional models.

2.2 The origin of perturbations

All models for structure formation assume that there
existed small perturbations around the Friedmann
model in the very carly universe. The detailed evolution
of the models depend, to some extent, on the nature of
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these perturbations and how they originate.

In general, one can characterize a mildly inhomo-
geneous universe by specifying a density distribution
function of the form p{(t,x)=75(t)[1 +5(s,x)]), where
6« 1. It is more convenient, however, to work with J, ()
which is the Fourier transform of o(x,t). (If the
background universe has Q2s1, then 1t s more appro-
priate to use some other complete set of functions
rather than plane waves. This complication does not
affect the conclusions which we are interested 1n.) It will
then be possible to study the evolution of the density
perturbation o, (f) by some suitable approximation
schemes. However, notice that a function like p(t, x) or
&, (1) contains far more information than we require, in
the sense that it specifies the actual density at any
spacetime event. What we are actually interested m wiil
be the statistical properties of the density distribution 1n
some large region of the universe. For this purpose, it is
usual to assume that any given (large) region of the
universe constitutes a realization out of an ensemble of
possible density distributions. In this case, there will exist
a probability functional . [d,,1] specilying the
probability that the density contrast is described by the
Fourier coeffieients 6, at any given time f. This
probability functional will contain the full statistical
information about the density contrast.

Any model which produces the initial density contrast
should also specify the statistical propertics of the
density contrast by giving this probability functional
[0,,t]. Two separate physical mechanisms have been
explored in the literature for the possible origin of the
initial density perturbation. The first one® uses
quantum fluctuations in the very early umverse to
generate classical density perturbations at some later
epoch. These models usually lead to a probabihity
functional & which is a guassian. In this case, all the
statistical information about the density perturbation is
contained in the two-point-function P (k)=<|&|*)
which is called the power spectrum of the fluctuation.
The second class of models® use some suitable form of
sceds arising in the early universe, to produce the
perturbations. These seeds (like strings, textures,
primordial black holes, etc) accrete matter around
them by gravitational attraction and thus produce
inhomogeneities in the density distribution. The stati-
stical characterization of such a perturbation is much
more complicated; in general it will not be guassian.
The power spectrum Pl)={|8,|*) is well-defined even
in this case though it does not completely characterize
the probability distribution. In the linear regime,
however, P(k) is the most important statistic in all
models.

The power spectrum determines several other physi-_

cally relevant quantities. Consider, for example, the
mean-square-luctuation ¢*{R)= <{8M/M)z>in the
mass contrast within a sphere of radius R placed
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somewhere 1n the universe. It is easy to show that

s _ [ di( k¥ PUY\[ 3sin kR~ kR cos KR T
7 ) J k( 20 )[ (kR)? (1)

ymdl

Clearly, each logarithmic interval in k contributes an
amount A% (k)= (k3 P(k)/27%) to the mass fluctuation at
a scale R~k~*'. Similarly, each logarithmic interval
contributes to the mean square gravitational potential
the amount ®%=(k%|¢,|*/27%), where ¢, =4nGQp_(3,/k*)=
(3H?*Q/2)(9,/k?). That is ®* =(3H?*CQ/2)? (P (k)/2n>k).

The ¢*(R) and ®* also determine, in the linear
regime, the probability distribution of density contrast
and gravitational potential in a randomly chosen
spherical region of radius R. For example, the
orobability that such a region has an average density
contrast & is given by

P[8146=[2rc?(R))™'? exp(—6*/26*(R)dS. (2)

Smmilarly, the probabihity distribution for the gravita-
tional potential ¢ is a gaussian with width ©%(R). These
distributions, of course, will be modified 1n the
nonlinear regime or in all regimes when the perturba-
tions are nongaussian.

The models for the generation of density perturba-
tions will provide us with the form of the function P (k).
A large class of models—including the inflationary
models—Ilead to an initial spectrum of the form
P{k)=Ak. For such a spectrum’, {called ‘Harrison-
Zeldovich spectrum’ or ‘scale-invariant spectrum’) the
mean-square fluctuation in the gravitational potential
O2=(3H*Q/2)* (4/2=*%)-is independent of k. This ‘scale
invariance’ arises from the fact that the models which
generate these perturbations do not possess any
intrinsic length scale.

2.3 The amplification of perturbations

The small perturbations, once generated, will have a
tendency to grow. Regions which are overdense will
accrete more matter (or, equivalently, will expand more
slowly compared to the background universe) and the
density contrast will increase. In the initial stages of
growth, when d« 1, the dynamics can be analysed using
linear perturbation theory.

The linear perturbation theory™? allows one to
compute the power spectrum P(k, ;) at some time ¢,
given the initial spectrum P(k t)=A4k at some
t=t,<t,. (Ws have taken the inttial spectrum to be
scale-invariant, though most of our results will have a
wider applicability.) It is often convenient to use the
epoch of decoupling as a final reference point and set
tr=1t,.; it is also usual to work with the quantty
Ak, )= (k3 P(k,0)/2n%)"? rather than with P(k, ). The
form of Ak, 1, is then completely determined by the
nature of the dark matter present in the universe.
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Cosmological considerations®, coupled with some
recent laboratory experiments® suggest that any stable,
weakly interacting, fermion which constitutes the dark
matter must have 2 mass m which s either in the range
of (10-100) eV or greater than about 35 GeV. Models in
which 10eV < m < 100 eV are called ‘hot dark matter’
(HDM) models while models with m > 35 GeV are
called ‘cold dark matter’ (CDM) models. In the HDM
models, we have €py h2=(m/90 ¢V) and A%(k,t,) is
given by!?

A2 (k 1, )= A (L) k* exp [~ 4.61 (kke)*?],  (3)

where k=016 Mpc™' (m/30eV) and A(t,,) is an
amplitude which is independent of k. In other words,
the shape of the spectrum is completely determined by
m. (Theoretical models in which perturbations arise
from quantum [luctuations are not successful in
predicting an acceptable value for A4; it needs to be fixed
by comparison with obstrvation. Seeded models give a
somewhat better handle on the amplitude. But even in
these models, there exists a reasonable amount of
freedom to adjust the numerical value)) In the CDM
models, the variance is given'! by

Aty )k
(1 + Bk + Ck**+ Dk?)? @

A%k, ey )=

with B=17(0h%) " * Mpc, C=9{th})~ *?* Mpc*? and
D=1 (0h?)~% Mpc?. (To be precise, this fitting formula
reproduces the CDM results at scales larger than about
1 Mpc. At smaller scales the actual spectrum increases
logarithmically.) Most of the seeded models*?* will give
a spectrum which has more small scale power than the
HDM spectrum.

If we normalize the CDM spectrum by setting
cg=c(8h™' Mpc} to unity at t=t,, we find that
A;=4.4x10° for a universe with Q=1,Q =0 h=05.
The CDM spectrum ‘shifts’ to larger length scales as
Qg k% is decreased. If we consider a class of spectra, all
normalized to the same value at, say, R,=8 A~ Mpc,
then decreasing {lpyh* will increase the power at
R> R,. This fact can be used to increase the power at
large scales by keeping Q___#0 and Qg+ Q __=1. For
example, if Qpy~0.2, Q _~08, h=07 we get A=
25 x 10% with the same normalization o5=1; this is an
increase by a factor S in large scale power.

Note that both the ¢xpressions (3) and (4) reduce to
the form AZock® for small k (ie. for large R~k 1)
which corresponds to the shape of the initial spectrum.
(Changing k* to k" we can incorporate any other
initia) spectrum which is a power law) For large k, the
power is reduced considerably compared to the
primordial spectrum. In HDM models, this occurs due
to a phenomenon called *free-streaming’ which reduces
the power exponenuially at large k. In the CDM
models, A? (k} does increase with k but not as fast as the

Yali
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1initial spectrum. It flattens to a constant value for
R<L, where L,~4(h*)"*Mpc. This change of
shape n the spectrum (compared to the initial spectrum)
occurs'? due to a process called ‘stagexpansion’.

The above expressions, strictly speaking, refer to the
power spectrum of dark matter. At t<t, _, perturba-
tions in the baryons do not grow since baryons are
strongly coupled to the radiation. At ¢ 3> £, ., baryons
decouple from radiation and are influenced by the
gravitational field of the perturbed dark matter. This
leads to a rapid growth of baryonic density contrast
and the equality 84 ~ 3y is achieved fairly quickly.

For t>t, , the density contrast grows in proportion
with the expansion factor: A(k, ) =~ (a(f)/az.) Ak, L4, ) 1f
{2=1. (This fact is often used to specify the amplitude of
the power spectrum in terms of the ‘present’ value
Ao=A(,, ) (1 +2z,..) We shall follow this convention of
specifying A,, rather than A(t, ), when no confusion
will arise). For models with Q#1 the growth of
perturbations is more complicated. A reasonable
approximation!? will be A(2)=A(z;Q=1) (Q(2)/Q)°%%,
where {)(z) corresponds to the value [p(z)/p.(z)] at a
redshift z. In a umiverse with £}<1 the growth
effectively ceases at {1+z)=~Q"! Thus, to obtain a
given density contrast today, we need a larger A(ty. ) in
a Q<1 universe compared to that in a {=1 universe,

As soon as A~1 at some scale &, the linear theory
breaks down around that scale and we need to do a
nonlinear analysis. We shall now consider several
aspects of nonlinear density growth,

In the HDM models, it is the scale k,=0.694 kg (at
which A is maximum) which will go nonlinear first.
Since a region with a size R will contain a mass of
MR)=117x10** M , (Q2h*)(R/1 Mpc)® in the
matter-dominated phase, the first nonlinear structures
which form in HDM models will have characteristic
masses of about M, =4x10'* M _ (m/30eV)™% This
mass corresponds to that of large clusters; smailer
structures, like galaxies, have to form by fragmentation
of these objects in the HDM models.

The evolution is very different in CDM meodels. Since
A{k) 1s a (gently) increasing function of k, the small
length scales (corresponding to large &} will go
nonlinear first. The structures will form hierarchically
with larger scales going nonlinear at later tirnes. There
will also be considerable amount of merging and ‘cross-
talk’ between the various scales. It is possible to capture
some features of the nonlinear stage of the hierarchical
clustering by the following scaling relations. Suppose
we approximate some region of the power spectrum as
P(k)oc k®, where n is a ‘local’ index. {(For the CDM
spectrum, n=1 at large scales and varies continuously

-to n=—23 at very small scales. For galactic scaies n

~—2) Then A%k, t)cca?()k"*>act®3 k™% for
t>1,..; thus we see that a scale k goes nonlinear at a
time t,(k)oc k=30*34 These structures will have a
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size of Loc k™ Ya(t,)oc k™1t oc k™"*92 and a dens-
ity of poctj2oc k*30+ 32 o [ -3t oc L7V, The
constant of proportionality in any of these relations can
be fixed if we know the scale which s going noniinear
today; that is, the value of k for which A%(k,t,) is unity.
Observations suggest that this occurs at around k.
~(8 71 Mpci ™!, Also note that these refations imply
the scaling v o (G MJL)Y2 oc LIt~ *3) oo ppti18 {1 =e)
between the velocity dispersion v and mass M of a
system. For galactic scales with n~ — 2, we get v*occ M
which is borne out by observations to a certain extent.

Somewhat more detailed modelling of nonlinear
dynamics is possible using the concept of correlation

function £(x,t) which 18 the Fourier transform of the
poWwer Speciium

[ 2k wox [ Pdk sin kx
§(x,t)—-L2ﬂ)3P(k,t)e —L —A (k,r)( - )

(3)

To an excellent approximation, &(x,t) and o(x,t) are
related to each other by

3 X
0 (x,1) = -—;J EQy, t)y* dy. {6)
X~ Jo

The behaviour of ¢ and ¢? in the extreme linear and
nonlinear limits is easy to determine. In the extreme
linear case, a2(x,t)océ(x,)oc@a?(@x P oo (M3 x~0+3)
In the extreme nonlinear case, bound structures with
fixed proper radius !=a({f)x will not participate in
cosmic expansion. At a fixed I, ¢2={{5p/ps)*) must
now grow as (a%/a’)=a3, The a° factor arises from the
fact that the background density p, decreases as g °
and o?ccp; 2; the a’ factor in the denominator arises
from the fact that in all samples of proper radius [ used
in taking the average, only a fraction proportional to
a3 will contribute to £, Thus, in the nonlinear regime
Elt, ) e o2t x) oc a® (D F{a(t) x). The form of F can be
determined by matching the [incar and nonlinear
expressions at £=1, This will lead to the result that
Enxa®[ax]™” with y=3{(n+3)/(n—+5). Thus,

Elin (1 X) 0C @ () x ™ 3,
‘fnl {f, x) ﬁqa} [ISIIJ Y o HﬁHH* S}I ~3(m+ F/in+ 53_ (‘_‘!}

This relation connects the index of the nonlinear regime
with that of the linear regime. Notice that, in the range
n> — 2. the nonlinear correlation function grows more
slowly compared to the Linear spectrum,.

The 1ransition between the linear and nonlineat
regimes is more difficult to analyse and one has to
usually resort to numerical simulations’®, It s,
however, possible to make some progress along the
following lines'®. Since the mean number of excess
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neighbours of any particle is given by

N{xt)=(n,a%) J x 4aytdy {1+ &Ly, 1, {33
0

where n is the proper number density, the conservation
law for pairs implies

.10
0t ax? ox

[x*(1+&v]=0 9)

with ¢ denoting the mean relative velocity of pairs.
(For a derivation of equations (8) and (3) see Peebles!.)

Using equation (6), it is easy to obtain an equation for

ot

a%[l+az(a,x)]=( v )1 0 [x* (1+a?(a,x))].

—ax /x%ox
(10)

It is now 'clear that the bechaviour of ¢®{a,x) is
essentially decided by the dimensionless ratio hia,x)
=[v(a, x)/{—ax)] between the relative velocity v and
the Hubble velocity ax=(d/a)x . In the linear limit,
when g2« 1, linear perturbation tienry‘*? can be used
to show that h(a, x)= (2/3)6%; in the extreme nonlinear
limit {2>1) bound structures would have formed in
which v will balance out Hubble expansion: that is
p=—ax implying h=~1. Since there is no mtrinsic
length scale in the problem, it seems reasonable to
assume that h depends on a and x only through some
universal function h=h(o?) which has the asymptotic
behaviour derived above. Of course, this assumption
has to be ultimately checked by comparing the results
with the numerical simufations's+1°,

When h(a,x)=h[e%(a,x)], it is possible to find a
useful solution to equation (10), It is straightforward to

verify that the solution ¢?(a,x) is determined by the
relation

2
j h (a‘f(a; ) =ln[a3 S ]

where m is a constant. When /(0% ~ (2/3}¢? and
o*«l, we can ignore ¢ compared 1o Ino? and this
relation gives the linear theory result: ofcca®x*™.

Clearly m= —(n+3)/2 if P(R)ock". On the other hand,
when h= 1, 62» 1, we get

(11)

(12)

wheee y= Im/(m~ 1}= 3 (n+ 3 (n + 5). From equation ()
we find that the same scaling behaviour holds for ¢,
Thus the limiting forms derived earlier arise from the
behaviour of h(o?). Also note that the right-hand side of
equation (11) is a function of cf(g,i=x{1+0’)7)x
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a*x>"(1+g*y™3, which is the density contrast
¢,(a, ]} in the linear theory evaluated at the scale
[=x(1+¢%"3 Thus we can write

do?

o1 +a)) (1)

2
ﬁi[mﬂ=ﬂﬂpgj

Since the original power law index has disappeared, this
retation suggests that of(a,f) is a universal function
¢2{a, x). To determine the behaviour of this function we
need to specily h(c?). Numerical simulations'® show
that h{o?) bas a single maximum {(and hence overshoots
ltl=dx before falling back) at about ¢ ~(8~ 15} with
h ~(1.5-2). The simplest model*? for such a function

TDax

with correct asymptotic behaviour will be:

2 (1+1a?)

hio®) = 5"2{1 +(2/3) Agh) (14)

with one free parameter A. Integrating equation {13), we
find that

ﬂi(a, n.___ﬂ.l(l + 252)931+2}13[1 —.1)(1 +Uz)—{3+11)j3[1 —J.},

(15)

where 6?2=0¢%(a, x). Best agreement with the numerical
results s achieved for A~0.36 for which
oi(a,)=a?(1+0.3602)! 5°4(1 + 6%)~ 137, (16)

Figure 1 shows the function ¢?(o7); also shown is a
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Figure 1. The nonlinear mass fluctuation o%(a, x) is plotted against
the hinear mass fluctvation g(a,l) evaluated at i=x(l+0%)' The
solid line shows the ‘universal’ best fit to numerical simulation given
in ref. V7. The broken line is based on the theoretical model discussed
In the text
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multiparameter fit'” to the numerical data given by
02— o2 [ +0.015806*+0.00011542 13
£ | 1+0.9260*—0.07436°+0.01566% |

(17)

It is remarkable that the single parameter fit in
equations (14), (16) is reasonable for all ¢ > 6 and for
02 < 0.2. The deviation in the intermediate range is due
to the fact that equation {(16) has the behaviour
(6,/6) =14+ C (¢?) while the actual data suggest
(o foY =140 (6*) for o2 > 10.

It should be stressed that o7 and ¢? in the above
formulas are evaluated at different length scales. The
relation of 6% to g} at the same length scale is quite
complicated and depends on the shape of the spectrum.
For example, in the extreme nonlinear limit,

0% (x, )= 11,4200+ 5 g61n+5) (/3=

~11.4%#0+3) 4—2(t2)n+5) ﬂ.i (J’.’, a) (x/xu)ﬂ (18)
with f=[(n+3)(n+2))/(n+3), y=3{n+3)/(n+35) and x,
~8 4~ Mpc. For a CDM spectrum, galactic scales
have n~—2 and smaller scales have n>~ —3. So the
nonlinear density contrast 1s a factor of about 11 larger
at subgalactic scales and a factor of 11%3 higher at
galactic scales. This has the effect of steepening the
correlation function at the nonlinear end.

The statistics of the density contrast, described by the
probability distribution .%° [8], will also change in the
nonlinear regime. Since the density has to be positive
definite, we must have % [8]=0 for é<—1. (This
restriction, of course, exists in the linear regime as well
but since P[{d|=1]« 1 in the linear regime it makes no
practical difference.) Further, once nonlinear clumps
have formed, most of the region in the universe will be
underdense; thus 9 [§] will be peaked around é > —1
with a long tail for positive ¢. The probability
distribution will go over to the gaussian {orm of the
linear theory if a large filtering scale i1s used.

It is possible to evaluate the nonlinear probability
distribution in an approximate manner and verify the
above conclusions. One such study'® shows that the
probability . [§; L] at the filtering scale L is

N 1
o, L) =
‘?[ ] ,r"—zjr &4 (5](1 +5]7f3

(19)

9 (1 Y
“p[ zcrg(a)( (1+3)”3) “

where N is a normalization constant and ¢4(9) stands
for the variance calculated from the linear theory
evaluated at R=L{1+9)*3 It is easy to venfy from
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equation (19) the following facts: (i} When the filtering
scale L is large, 0 o« L7%, and 9 reduces to the linear
theory result. {(11) In general .9 1 much more sharply
pcaked and has a mean value shifted towards o <0. (111)
For small filtering scales (i.e. when L—0), the vanance
o5 effectively becomes a constant (in non-HDM models)
and .7 [J; L] becomes sharply peaked at ¢~ — 1. These
resuits agree with the expectations mentioned in the last
paragraph.

The discussion above concentrated on the dynamical
effects due to gravity alone. The evolution of baryons in
the nonlincar stage s much more complicated because
they can cool by radiating energy. The effect of such
processes will be to make baryons sink to the bottom of
the dark matter potential wells. thereby segregating
Jark matter and baryons. Several complicated hydro-
dynamical effects can anse during this stage and we do
not have today a systematic understanding of such an
evolution® '%. These processes, in particular, can make
the statistical behaviour of luminous matter very
different, from that of underlying dark matter distribu-
tion. Since the study of density distribution at small
scales 1s invariably based on Juminous galaxtes, this fact

creates considerable difficulties 1 interpreting the
observational data.

3. Observational background

We shall now review a series of observational results
which any model for structure formation must explain.
In each case, we shall briefly indicate the status of
theoretical models in explaining the observations. A
more global comparison will be attempted in section 4.

3.1 Distribution of galaxies

The most direct measure of inhomogeneities in the
universe is provided by galaxy surveys!?, These surveys
can be broadly classified as follows: (i} Fairly complete,
all-sky, three dimensional surveys like the CfA, IRAS
and QDOT surveys. (11) Two-dimensional surveys (like
APM survey) which contamn information about the
angular distribution of galaxies in the sky but lack
actual redshift information. (11) Pencil-beam surveys
which could provide information along particular
directions in the sky, The depth of such pencil beam
surveys can be fairly high, though the sky coverage s
somew hat limited.

One useful statistic that can be extracted out of such
surveys is the correlation function £(r) or cquuivalently,
the density contrast a(r}. This information 1s directly
avalable in three-dimensional surveys; in two-dimen-
sional surveys it is pussible to extragt this information
from the angular correlation function (), Pencl
beam surveys usually do not possess suffictent spread to
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allow reliable computation of &{r). Hence these surveys
often rely on purely visual impressions in the
Interpretation of data.

The o{r) obtained*® from some of the galaxy surveys
1s shown in Figure 2. It 1s clear that o{r)>~1 at r=r,
~8 h™ ' Mpc, suggesting that linear theory is applicable
for r>»r . The correlation function &, (r) corresponding
to this data w  well  approximated by
g () =(r/5h™  Mpc)™*® for 0.1 A7" Mpe<r<20h™"
Mpc. (Note that the QDOT resulis (filled triangles) use
cubical cells of side R in computing ¢(R), while the
others are based on spheres of radius R. This leads to a
systematic shift. A more detailed comparison of QDOT
with other data is in progress.) Since galaxy surveys
contain information up to 60k~ Mpc or so it may
seem that we ¢an, in principle, compare the linear
theory with the observation over a reasonable range.
There is however, one major difficulty: The information
in galayy surveys comes from the luminous, baryonic
part of the galaxies. It is not obvious that the statistical
properties of the luminous part will be the same as that
of the underlying mass distnbution. For example, it
could happen?! that galaxies form at those regions of
space where the density contrast 1S much higher than
the average; in that case, the galaxy-galaxy correlation
funciton &, (r) will be larger than the underlying mass
correlation function &{r). It is usual to write -;;“'gg(r)=b3§ (*)
(with 5> 1), where b is called the biasing factor. There
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conld®? alo be other effects —hke the dynamical
retion — which could make b Jess than umty. What s
more, stnce the astropliysical processes which Operaic
at different scales are diflerent, the factor b couid even
be function of r. This possibility could scriously reduce
the predictine power of the theory unless we understand
clearly the processes which could scgregate luminous
matter from dark matter. Usually, onc assumes that b 1s
a constant and tries to determine it by comparing the
theory with obscrvations.

These attempts have led to somewhat divergent
results. To begin with. numerical simulaticns®? of
nonlincar growth show that it is extremely difhcult to
make the correlation functions in HDM models to
agree with .. The duficulty arises mainly because of the
following fact: HDM models have a characteristic scale
of about 25h f Mpc. When galaxies form due (0
fragmentation of larger structures, this scale is imprinted
on the galaxy distribution. The observed scale in & oz 18
about §h~* Mpe. It follows that HDM will lead to a
calaxy distribution which is much more clustered than
1s observed.

In CDM models it is possible to obtain an
agreement?* between observation and theory provided
h~(2-2.5) and h=0.5. The steepening of the correlation
function in the nonlinear scales, discussed earler, plays
a crucial part in obtaining this result. The CDM
models, however, run into trouble?® at larger scales
taround r > 40 Mpc). Since the biasing was chosen to
match the distribution at small scales, the o (r) at large
scales falls considerably short of the observed results.
For exampie, if we set o{8h™* Mpc)={1/b), then we
find that ¢(50 h~! Mpc)~(0.1/b). This is a factor 2
below the observation even if we take b=1. Note that
we are actually concerned here with the shape of the
CDM spectrum in these observations; the discrepancy
shows that the shape is wrong. One obvious way out of
this dilemma wilh be to make b scale-dependent, thereby
allowing o, to have a shape different from Gcpm; L.e.
ﬁga]{R}r-ﬁmM{R}j’b (R). Unfortunately, this will take
away the predictive power of the theory. Alternatively,
one can try ta normalize the spectrum at large scales,
say at S0h~! Mpc. We have to then invoke some
(unknown) nonlinear effect to reduce the ¢ at small
scales. This difficulty is probably the most difficult
challenge faced by all the galaxy formation models. We
shall discuss several related aspects of this problem in
what follows.

Incidentally, ail the surveys show that MM is
a decreasing function of R thereby confirming our basic
assumption that the universe can be described—at
sulficiently large scales —by a Friedmann model.

3.2 Galaxy counts

Observations of low redshift samples of the galaxies
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suggest that the galaxy luminosity function has the
form

DLIALdY =Dy (LiLe) F exp (= LIL)LIL)dV
(20)

with ®,~0012h3 Mpc™>, Lo~10'°h™2 L. and «
~(1.1-1.2). Recently, there has been significant progress
in the counts of very faint galaxies?®. These obser-
vations are now available up to B=27 magnitude in
blug (corresponding to 7x10 *'ergem=? Hz™' at
4500 A) and up to K=23 magnitude in infrared
(corresponding to 4x1073° erg cm~? Hz ! at
22000 A). For galaxies with magnitude up to B=24 or
s0, the median redshift appears to be around 0.4. In
general, these counts lead to far more faint galaxies
than can be accounted for in simple models, especially
beyond a magmtude of about B=2l. For example,
there are about 4.5 x 10° galaxies per square degree
which are brighter than the 27th magnitude; this is a
factor 5 to 10 higher than what is expected from the
luminosity function for most cosmological models. The
counts also show that the dispanty is different in
different wavebands, The latter fact suggests that one
cannot account for higher counts by setting €, #0 so
that more cosmological volume is available at the
redshiflts of z~(0.3-0.6).

At present two difkient explanations have been
suggested for the observed abundance of faint galaxies:
() One may assume that there has been significant
amount of galactic mergers in the low redshift universe.
This would naturally lead to more galaxies at higher
redshifts than expected from a low-z lumnosity
function. (ii) More generally, one may assume that there
was significant amount of evolution in the galaxy
luminosity function at low redshifts. Observations seem
to suggest that such an evoiution should depend not
only on the luminosity of the galaxy but also should
differ from band to band. Both these models face
difficulties and at present it is not clear whether we can

explain all the faint galaxy counts by a realistic
model?”.

3.3 High redshift objects

There is mounting evidence to suggest that significan.
amount of structure formation must have taken place at
redshifts even as high as zx4.5. This evidence comes
f[rom essentially five different kinds of observations.

(i) Quasars have been seen?® up to a redshiit of
about z~4.9 and there are more than thirty quasars
with a redshift larger than 4. If the conventional models
for the quasar luminosity are correct, then the galactic
cores containing these quasars must?® bave a mass of
Mg 2 10'° M. Thus the mass scaies of M ={10"°-
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10'") M, should have gone nonlinear at a redshift of
z>4. From theoretical models, one can relate the
collapse redshift z_(M) for a mass M, to the density
contrast &, (M) computed using linear theory. Most
models suggest (1+:z)=(5./d,) where o ~(1.5-2).
Figure 3 shows the mass which will collapse at various
redshifts in the standard CDM model with b=2. It is
clear that the model has some difficulty in accounting
for the data.

(1)) The study of absorption lines of quasars shows
that there exist®® bound clouds of neutral hydrogen
(with masses of about (10°-10'')M ) at redshifts z
~25-35 Several of these absorption line systems
indicate the presence of heavy elements, suggesting that
the universe at high redshifts should possess fairly
evolved structures in reasonable quantities. At present,
we have absorption data on Mg Il at z=(0.3-1.5), on C
IV at z=(1-3), on Lyman limit systems at z=(0.6-3.5),
on narrow, sharp, Lyman -« lines at z=(1.7-4) and on
damped Lyman -« lines at z=(1.7-3.5). For each of
these absorption systems, one knows the number density
per unit redshift range as well as the distribution of
hydrogen column density. By and large, these number
densities are significantly higher (by factors of 10 to
100) than what would be expected in a model with
Q=1, h=05 and Q__ =0, if we assume that the
comoving density of absorbers is conserved. These
observations have to be accounted for in any scenario
for structure formation.

(ii)) Quasars can be used to probe the existence (or
otherwise) of smooth distribution of neutral hydrogen

10"
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Figure 3. The muss scale which goes nonlincar at various redshifts is
shown for a CDM mode]l with ¢, =05, h=0.5 Also shown are the
madsses of several high redshift objects.
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in the universe. Any such distribution will lead to a dip
in the spectrum on the blue side of the Lyman alpha
emission line. No such dip is seen, allowing?! us to
conclude that the density of neutral hydrogen—
distributed smoothly in the universe —must be less
than about n;; ~84x10712h cm™3 at a redshift of z
~2.64. This 1s to be compared with the baryon density
at this redshift, which is about ng~2x107% (Qgh?)
cm™ . Similar results hold for quasars with higher
redshifts. Since the standard Friedmann model predicts
that neutral atoms were formed at about z,, ~ 1100, it
follows that the smooth component of hydrogen must
have been retonised sometime in the redshift mterval
Z4..> 2> 4. (An alternative hypothesis would be that
galaxy formation was extremely efficient and formed
lumps out of all hydrogen; this is virtually impossible to
achieve in any sensible theoretical model.) Consequent-
ly, at least some structures must have formed at z > §,
evolved by a reasonable amount and emitted sufficient
quantity of UV photons to reionise the hydrogen. This
provides another, indirect, evidence for early structure
formation. At present, however, there is no satisfactory
theoretical model for the source of ionising flux32.

(iv) Several radio galaxies have been detected’” with
a redshift of z > 2. Though the mass estimate of these
galaxies is somewhat model-dependent, most reason-
able models give M > 10"! M. This could probably
be the most direct evidence we have for star-forming
galaxies at z > 2.

(v) There exists®* a single observation of redshifted
21 cm line emission from a cloud of neutral hydrogen at
a redshift of z=3.397. The width of the line suggests
that the velocity dispersion in the cloud i1s about v
~ 180 km s~ !. From the observed flux of S=11.4 mly,
one can estimate the mass of this cloud to be
Mu=22x10Ph2M,, if Q=1 and M,=69x
10'3 h=2 M, if Q=0.1. (The total mass can be a factor
ten higher.) Theoretical models predict that the
characteristic velocity ¢ for such an object will be about
g~1400 (M/10*> M5 h™ ') kms™! if it is spheri-
cally symmetric. The fact that v« e suggests that either
the object is far from spherically symmetric or it 1s seen
during a special epoch in its evolution??.

The first possibility will arise naturally n the HDM
models in which masses of about 10'* A, will go
nonlinear first. Further evolution can produce pancake-
like structures with highly anisotropic velocity disper-
sion. Unfortunately, the MBR anisotropy dctected by
COBE restricts the power spectrum of pure HDM
models, making it highly improbable that these objects
could have formed at z > 2. (We will discuss the COBL
bounds in scction 3.5). The second possibility can be
realized if we interpret this object as a part of the
protocluster of galaxics and assume that it 1s s¢en just
after it has turncd around, when its velocity will be
much lower than the virial vclocity . However, the
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probability for the occurrence of such a fortuitous
circumstance is also very low. The detection of larger
number of such objects could pose serious problems for
many scenarios of structure formation.

34 Large scale streaming

In a strictly homogeneous universe, galaxies will only
have Hubble velocities. The deviation Jdp(x,t) of the
density from the uniform value will induce velocities to
observed structures over and above the Hubble
velocity. The magnitude of this velocity (called ‘peculiar
velocity' or ‘streaming velocity') is easy to estimate n
the linear theory. If the excess mass in a region of size R
is 5M (R) then the average peculiar velocity v(K) in this
region will be v(R) =gt = ¢t (GSM(R)/R?) =(4nG/3)tR (dp)
= ((LH ot/ 2) v (R} (R), where vy (R)=H, R is the Hubble
velocity and &(R) is the density contrast at this scale.
The quantity f(€)=(3H,t/2)§2 is purely a function of £
and is well approximated by AQ)=Q°° Thus we get
[0 (R)/ g (R)1=(1/3)Q2° ¢ (R). Since doc R™% at large
scales v oc R™! for large R.

The peculiar velocity of our Local Group can be
estimated reasonably accurately from the dipole
anisotropy of the MBR (sec next section) and is found*®
to be t,g=(622+20) km s”' in the direction of
[=277°4+2° and b=30°+2°. To measure the peculiar
velocities of other, distant, galaxies one requires a
distance indicator which is not based on Hubble's law.
Most measurements in recent years use either the
Tully-Fisher selation (Locs® where L is the absolute
lumninosity of a spiral and v is the rotational velocity) or
the D,—a relation (D,c¢*? where D, is a suitably
defined angular diameter of a spiral and ¢ is the central
velocity dispersion). Such measurements®’ of pecutiar
velocities have led to the following conclusions:
(i) There exists a large, bulk velocity of about
600 km s~ ! within a region of 60 h~! Mpec. A study>® of
the velocity field shows that v (40 h™* Mpc)=(388+
67) km s~ and v_ . (60 h™! Mpc)=(327+£82) km s %,
(ii) The galaxies within a region of about 5 h™' Mpc or
so share the motion of the Local Group.

We see from Figure 2 that 6(50 h~* Mpc)=0.2; this
would imply that (v/vy)=(1/3)6=0.067 or ¢(50h™"
Mpc)~335 km s~ !, which is in rough agreement with
the v ,, quoted above. The detailed maps of density
distribution obtained from velocity field, however, do
not match with the opne based on IRAS and QDOT
surveys>®. The cause for this discrepancy is not clear.
The fact that ellipticals make significant contribution to
velocity determinations but appear only marginally in
the infrared selected samples could be one possible
source of disparity.

While the galaxy surveys are in broad agreement
with peculiar velocities, theoretical models have diffi-
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culty in accounting for v,,.. II we set ex~1 at rg
~10 A~ Mpc then v~p, at r=ry; 5o v(r)=10* kms™!
(r/1OR~ ! Mpc) ™! for large r, giving v(60A™' Mpc)
~166kms~ 1. This is far short of the observed
velocities. This discrepancy, of course, is to be expected
because theoretical models have far less power at large
scales compared to what is seen in galaxy surveys.

3.5 Distortions in the microwave radiation

The MBR photons reaching us today could contain
information about the universe at z=z, =~10* if they
did not interact significantly with matter at z<z4,,.
(The latter possibility can occur in models in which
matter was reionised; we will discuss this case
separately.) Physical processes which have a characteri-
stic length scale L will distort the temperature
distribution of radiation in the ‘last-scattering-surface’
(LSS) at the corresponding scale. This will, in turn,
appear today as temperature anisotropy S(8)=(AT/T)
in the sky at a characteristic angular scale
8(1) ~(§Y2) Ho(Lz) =344" (Qh) (Ly/1 Mpc), where
L,=L(1+2) = L, is the corresponding scale today (we
have assumed that z>»1). In particular, the Hubble
radius at t= 4., Hy! =cty,. will subtend in the sky an

angle of y=0 (H;!) = 087° Q' (24./1100)™ 172 > 1°.
This shows that most microphysical processes (which
operate at scales L«H™'} can only affect S(f) at
6 < 1°. Anisotropies at larger scales probe the
primordial, gravitational distortions*°.

The MBR anjsotropies at 8 <1° are of less
importance compared to large angle anisotropies for
two other reasons as well. We saw in section 3.3
(iii) that the matter in the universe was ionized
sometime before the redshift of z~5. Since MBR
photons could be scattered by ionized matter the
ionization history of the universe could affect the
predictions for the temperature amisotropies of the
MBR. It turns out, however, that e¢ven in the worst
possible case, of reionization of the universe can only
affect apisotropies at angular scales less than 8, ~7.4°
(Qa Q)% Thus the anisotropy at angular scales larger
than about 10° is safe from such distortion. Secondly, 1t
must be noted that the decoupling at z~1100 is not*!
an instantaneous event but takes place over a redshit
interval of about Az=80. This Az corresponds to 2
length scale of about Al~15Q7 12 Mpc and an angular
scale of 8 ~8 Q2 h, Thus it is anyway impossible to
observe temperature anisotropies below, say, 5°.

The temperature anisotropies of MBR arise irom
essentially four different sources, which we shall discuss
one by one. When the individual distortions are small,
they can be added together to obtain the total
anisotropy.

(i) The motion of the detecting apparatus with
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respect to comoving frame (in which the MBR is, say,
isotropic) will produce a ‘dipole’ anisotropy in the
radiation, If the fractional deviation 1n sky temperature
1s expanded in spherical harmonics as, (07/T)=38(0, ¢)
=2 mQm Vi (0, @), then the motion of the detector
contributes significantly to the /=1 term. Observations
shrow that the dipole anisotropy is ne¢arly hundred times
higher than the anisotropy due to quadrupole and
higher modes. For this reason, it 18 usual to subtract
out the dipole term and consider only the rest of the
contribution as intrinsic. Note, however, that the dipole
anisotropy allows us to determin¢ our motion with
respect to the comoving frame; this was discussed in the
last section.

(i) If the energy density of radiation in the LSS has
intrinsic spatial variation, then it will appear today in
the sky as a temperature anisotropy. In most models of
structure formation (6p/p)r =(0p/p)s at the LSS; in the
inflationary models, for example, (6p/p)g>(1/3) (0p/p)s.
This will lead to a temperature distortion of (07/T),~
(1/3)(0p/p)a=(1/3) opm (L)1 (1 +24.)" ', where opy (L) is
the linear density contrast of dark matter today and the
factor fi =(a,,/a4,)=(1/20 Q h*) arises because dark
matter perturbations can grow from t=t, onwards.
This formula, however, does not take into account the
fact that the decoupling is not an instantaneous process
but takes a redshift interval of about Az~8Q for its
completion. This smearing reduces*® the distortion by a
further factor of about f,~0.1 in most models. Since
g (50 h~! Mpc)=~0.2, we get (8T/T)~03h"2x107° at
the angular scale 8(50 h™! Mpc)=~0.5°. Notice that the
angular dependence of (67/T) is decided entirely by the
shape of (L), since o(L)cL™® for large L,
(6T/T),c62=03h 2 x1078(8/0.5°)" 2.

(iii) The random velocities in the matter distribution
at the LSS can induce Doppler shifts in the scattered
photons, producing a velocity-induced anisotropy. This
will give (8T/T), ~{v/c) ss. Since v=H™' (d¢/L), where
¢ ~(2GSM/LY~(dp/p,) (HL)?, it follows that (6T/T}j,
~(3p/p)(LH) evaluated at the L.SS. Clearly (07/7), {alls
as 0! at large angles. A simple estimate gives (01/T),
~ 1073 (8/2°)" L.

(iv} The most dominant—and 1mportant— contri-
bution to the anisotropy comes from the varation of
the gravitational potential on the LSS (this is called
‘Sachs —~ Woilfe effect’)*?. Since the photons climbing out
of different potential wells undergo different amounts of
redshift, we obtain a (8777 )=(1/3) (8¢/c?). [The (1/3)
factor may be interpreted as foliows: The gravitational
redshift produces (87/T}=(5¢/c?); time dilation gives
STITV= - 8ala= — (2} (St/ty= —(2{3) (84{c?). This
interpretation, however, 1s highly gauge dependent.]
Since 8¢ =(3p/p) HX LY, we find that (8T/T)=(1{*/3)
L2a(L). But since ooc L™ at large L, this leads to a
(8T/T) which is independent of ¢. To estimate the
magnitude of this efiect, note that goca{r), L¥oca® (1)
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and H?ocp,cca™(t) implying 8¢ (ty )=34(t,). The
gravitational potential of Jargest bound structures
today is 0 (t,)~107°¢? giving (6T/T)=3 x 1075 At
§> 1° this is the most dominant effect, since the other
two contributions fall with increasing #.

The search for anisotropy in MBR has recently led to
a positive result*®. The analysis of data from the
satellite COBE has now given the following numbers: (i)
The dominant term is a dipole anisotropy of magnitude
(AT/T)ypole = 1.23x107°,  towards the direction
[=284.7°2£0.8°, b=482°+0.5°. We saw earlier that
such an effect arises due to purely kinematic reasons. (11
The root-mean-square fluctuation in temperature, in
the angular range of 15°-165° is found to be
(AT/T)_.=(1.1£0.2)x 1077, (iii) The quadrupole con-
tribution to the anisotroy is (AT/T),=1{0.48£0.15) %
107>, These results have important implications for the
models of structure formation which we shall now
discuss**.

It can be shown that*” the mean square anisotropy,
(AT/T)? ., and the quadrupole contribution, (AT/T)3,
from Sachs-Wolfe effect are given by

AT \2 | I* 62
(_T_)rums—I?'I-‘flzz{zi_l_l)cI exp(-- 2 ) (21}

AT \2 5
o =_C — 82
( T)Q 15 L2 exp{—29,), {22)
where
Hg [=  180°
{laml*>=C, = 2; , dk kkz g ()] 2. (23)

Here j, is the spherical Bessel function of order [ and
n=2Hg'=2R,~6000 k™! Mpc.

The quantity 8_ can be determined from the response
function of the detector, which is usually quoted In
terms of a quantity called ‘full-width-at-half-maximurm’,
Orwim Usually, 8, = 0.425 0wy, The COBE instru-
ments have By =7" and are designed to detect the
large angle anisotropies in the MBR.

Since COBE is essentially probing large angular
scales, it is legitimate to use the asymptotic form
P{ky~Ak in computing C,. Then we find that
C,=AHE/24n and C,;=[6C,/l (I+ 1)]. Substituting these
relations into equations (21) and (22) we get
(AT/T)5=(5.28 X 1073 (41} and (AT/T)*= 0.03
(AH3). The quantity (4HY) is directly related to the
{luctuations in the gravitational potential B2 = (k3 |l
2n?) at large scales, Since ¢, =(4rGp,) (3, kHN=03/2H°
(5,/k%) we find that AHG=(§x/9)®* and we can
rcexpress the anisotropics as,

AT o .:p;(‘?_.f: ~ 0.51 . (24)
T Q 1 ris
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We can now compare the theoretical results with the
COBE observations. To bepm with, notice that
(AT___ ATg) = 2.3 if the spectrum has n=1. The COBE
results allow this ratio to fall between 143 and 3.94
with a mean value of 2.29. This is quite consistent with
the assumption of n=1. {It turns out that a least square
fit to the COBE data gives n=1.1£0.5. We shall,
hereafter, assume that P(A)oc k for small k.

The parameter @ and the amphlitude 4 can now be
determined by comparning equation (24) with COBE
result. Within the error bars, we get & =~ 2.2 x 107> and
A=(24 h~' Mpc)*, Also note that the quadrupole result
gives CYi=Wn/5)'"? (ATIT)o=(0.76+024)x 1073,
thus the maximum permitted value for C3/? is about
1077,

These results impose rather stringent conditions on
the models for structure formation. Consider, for
example, pure HDM models with a power spectrum of
the form discussed in section 2.3. For this spectrum, the
density contrast, A,=[k®P(k)/2n*]""* reaches maxi-
mum at k_ =069 kgg. The maximum value is
A =K P(k)2r2]V4=T73x10"% (A/1 MpcHH/?
{m;30 e¥)2. Using the COBE result, A>~{24 h™*)* Mp¢*
we get A 2042 k™2 (m/30eV) This value is far too
small to produce any nonlinear structures by today. We
saw earlier that for a mass scale to go nonlinear at a
redshift z_,, the density contrast should be about
0o = fl1+z ) With f=15—2 TEven with ©=03, equa-
tion (3) gives only z_; ~0; that is, structures are beginning
to go nonlinear only at the present epoch. Thus COBE
bounds rule out pure HDM scenarios.

The COBE constraints on CDM models are
somewhat more complicated. We saw earlier that if the
CDM spectrum is normalized to give ¢(8 h™* Mpc)=
(1/b) then we get g(50h™! Mpc)=(0.1/b) which is a
factor 2b lower than the results of galaxy surveys. The
(AT/T) computed from such a model will be a factor
1.2 b lower than the COBE result. Such a normalization
will also give unacceptable correlation function unless b
~72.

On the other hand, if we normahze the CDM
spectrum using the COBE results, we will get a larger
amplitude of A;=5.3x10° This will make op, (8 A™*
Mpc) overshoot the value of unity. What 1s more, the
shape of the spectrum will be hughly curved in the range
of (2-20) h~! Mpe, Nonlinear effects could steepen the
small scale spectrum, thereby reducing the curvature;
but this will also increase the amplitude to still higher
values,

COBE results, based on Sachs—Wolle eflect, probe
the dominant source of gravity, viz. the dark matter. In
that sense, dark matter spectrum at large scales must be
normalized using COBE. This gives apy (R)=(Ry/R)? at
large R with Ry=24 h~* Mpc. But the relation between
0,,{R) and the underlying dark matier distribution
opu(R) is far from clear. Galaxy surveys do show that
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0t S0h7Y Mpc)~0.2; since COBE normalization of
CDM spectrum also gives ocpn (50 ™1 Mpc)~(24/50)?
~0.2, it appears that the bias factor b~1 at least [or
R> 50h~' Mpc. This, however, demands that b<1 at
r~8 h~' Mpc to reproduce small scale galaxy distri-

bution, unless the shape of the spectrum is very
different from that of CDM.

4. Comparison and conclusions

The various observational constraints discussed so far
are summarized in Figure 4. The lower bound marked
‘high-z objects’ arises from demanding that mass scalcs
in the range 10'!-10'? M, should go nonlincar by
z=4.5. The bound marked ‘large scale streaming’ comes
from the reconstruction of velocity fields®®. At large
scales, we have marked the o(R) arising from the
COBE results.

To quantify the nature of these constraints we have
fitted (see Figure 5) a series of model spectra to-the
data. These spectra have the form:

Ak
Pk = :
W= iy (25)
10 'y y* 10° ag*
—oten, .
$
HiGM- 7
0BJECTS o
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Figure 4, Varicus counstramnts on the rms fluctuations M mass,
o (R)= {(6M/M ¥EDY2, are plotted against the scale R. Within a factor
or order unity, this ¢2(R) also represents the power in each octave,
[&* P(k)/2m?], at k=R ™', At the nght-bottom, the result from COBE
based on (AT/7} 15 marked assuming a spectrum whigh 1s scale-
invariant at large scales. The o(R) determmed from CiA, IRAS and
APM surveys dare shown by different symbols. in the case of APM,
WD) was inverted to give Z(r). We have not included QDOT data in
this figure because 1t 1s based on cubical cells. The lower bound on
a (R)—marked ‘high-z objects’—arises from requiring that mdss
scales in the vange (10'°-10"") M, should 2o nonlinear by z=45,
The bound marked ‘large scale streaming’ anses from the POTENT
reconstruction of veloony fields. We have abo shown the {rather
weak) upperbound from small angle anisotropics m MBR m the

retonized models and the slope of the galaxy—galaxy correlation
function (h=0.5).
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Figure 5. The results of galaxy surveys and COBE anisotropy are
fitted using simple test spectra of the form P{k)=Ak[1+(k/k )],
All the spectra are normalized using the maximum permitted value of
a, from COBE, viz. a,=107°. There is reasonable agreement for
n=24, k =0047 & (the {it can be marginally mproved by ::hn-:;smg
n=241 and k_=0047 h). This suggests a length scale of k7 '=21 k47"
Mpc in the thenry We have sét A=0.5.

The amplitude A is fixed using the COBE result of
(Cy). = 1073, That leaves two free parameters: (i) an
index n which determines the slope of the spectra at
large k and (ii) a length scale k' which fixes the
focation at which the spectrum bends. The density
contrast o {R)={((SM/M)E>Y? calculated from equa-
tion (25) i1s plotted for five different values in Figure .
Also plotted in the same figure are the o (R) determined
from a few galaxy surveys®. A goad fit is achieved for
n=24, k. =0047h Mpc™* (curve E). We have also
shown two curves (n=22, k,=0057 h Mpc™* and
n=24, k,=0.084 h Mpc™') whrch overshoots the data
and two curves (n=22, k,=0.025h Mpc™*! and n=24,
k. =0.025 h Mpc™!) which undershoots the data. These
fits suggest that a sharply bending power spectrum with
a length scale of about L~k '=21h~" Mpc may be
required to explain all the observations. Notice that
these spectra are characterized by pure power law
forms for large and small k. In contrast, a CDM
spectrum with the same COBE normalization shows
much more curvature. We have shown in Figure 6 such
a CDM spectrum along with the curves A-E. The
CDM spectrum agrees fairly well with the best fit curve
at large scales but has a very different shape at small
scales. It should be clear that the major trouble 1s not
so much as the amplitude of the spedtrum as its shape.

In summary, we may say that all simple models of

CURRENT SCIENCE, VOL. 63, NO. 7, 10 OCTOBER 1992
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Figure 6. The model spectra in Figure 4 are shown in an enlarged
scale and compared with CDM {dash-dot-dot curve). All curves are
normalized by COBE result. Note that CDM spectra show much
more significant curvature compared to the model spectra.

galaxy formation have some difficulty in explaining the
observational data. It is possible to produce models
which will explain all the data provided we have more
free parameters in the theory. All such possibilities
essentially revolve around using two different kinds of
contributions to Q in a judicious way. For example,
models containing both cold and hot dark matter or
CDM medels with ©,  #0 can be made to work. All
these models, unfortunately, suffer from unaesthetic fine
tuning of parameters.

Alternatively, these difficulties may dissappear when
the nonlinear evolution of density inhomaogeneities is
understood better, In particular, it is important to
investigate both the steepening of ¢ (R) in the nonlinear
regime as well as the dependence of the bias factor b on
the scale R. If dynamical processes can give &<1 at
small scales and steepen the spectrum properly, pure
CDM or a variant of it can be a viable model.

Note added in proof: The following two are among many
preprints which have appeared in recent months analysing
COBE results: {1) There is a preprint by A. Gould {(1ASSNS-
AST-92/29) suggesting that the quadrupole anisotropy in
the COBE data is consistent with zero at 13 per cent
confidence level. {2) A. R. Liddle and D. H. Lyth (LANC-TH
8-92} have analysed extensively several models for which the
initial spectrum is not scale-invariant. It turns out that COBE
imposes severe constraints on these models as well.
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Snow line depression over Tibet during
last Ice Age

S. K. Gupta and P. Sharma
Physical Research Laboratory, Ahmedabad 380 009, India

The Tibetan plateau has received considerable attention
in recent years for its role in inflaencing the regional and
global climatic changes during the last Ice Age. However,
debate persists on the thickness and areal extent of the
ice cover for which estimates of the past positions of the
snowline are required. Based on qualitative interpretation
of geological deposits, varying estimates (200-1500 m) of
the snowline depression during the last Ice Age have been
proposed. We estimate this parameter to be in the range
T00-850 m (maximum 1000-1170 m) from the translation
of 6180 data to temperature lowering on the Dunde ice
cap in Tibet. Such a lowering of the regional snow line
would have resulted in an extensive but marginally thick
ice sheet sensitive to small regional temperature fluc-
tuations as revealed by the isotope record of the Duande
ice cores and the palaeovegetation record of Tsokar lake
in Ladakh. In this study, we have not considered the

effect of possible precipitation reduction, which is likely
to further reduce estimates of snow line depression.

THE Tibetan plateau, with an area of nearly 2 x 10® km?
at an average altitude of over 5000 m above sea level,
exerts significant control on the Asian monsoon
circulation pattern'”>. During the last Ice Age, also
known as the last glactal stage (LGS), summer
monsoon circulation is supposed to have been weak or
absent®® 7 and the climate of Tibet was probably drier
than today. Considerable debate persists as to whether
the plateau was covered by an extensive’ ™ '% or a
marginal!! “'* ice sheet. Estimates of the thickness and
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the extent of glaciation in Tibet during LGS are
important because of 1its possible 1mplications in
palacochimatic modelling involving presence or absence
of snow cover over Tibet as an important boundary
condition.

A kilometre thick and extensive ice sheet as
envisaged by Kuhle et al® would amount to an
additional ice volume of about 3% 10° km? at the last
glacial maximum (LGM), about 18 kyr ago. This would
correspond to an equivalent global sea level change of
approximately 7-8 m. The contribution of such an ice
sheet to the 4'%0 of the ocean water can be larger than
suggested just by the hypothesized volume of this ice
sheet due to introduction of nonlinearity between the
3180 and the global ice volume!®, This effect arises due
to the fact that the ice sheet on Tibetan plateau would
grow mainly by increase in the ice thickness, thus
raising the altitude of precipitation. This would nduce
a strong change in the mean §'%0 of the ice during ice
sheet build-up {the altitude effect). A relatively thin ice
cover over Tibet would not significantly alter the
estimate of global ice volume and the oceanic $'°O
record.

The difference between a thick versus thin ice sheet
may aiso manifest in its response to a small warming
event. In the case of a thick (~1km) ice sheet over
Tibet, a small warming event would not be able to
lower the snowline (or the equilibrium line altitude,
ELA) below the top of the ice surface and may
therefore not result in significant melting of the ice
mass. In contrast, small tempcrature-induced move-
ments of ELA would sensitively affect the melting of a
thin (~ 200 m}) Tibetan ice sheet.

Kuhle has repeatedly argued®”'? that a large ice
sheet existed on the Tibetan plateau duning the late
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