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Information theoretic models in statistical
linguistics — Part II: Word frequencies and
hierarchical structure in language —statistical
tests

S. Naranan and V. K. Balasubrahmanyan

Word frequency distributions in language follow a nearly universal statistical law. We have deduced
a modified power law (MPL) function for word frequencies using Shannon’s Information Theory
(ref. 1). Data on word frequencies from ten diverse discourses are shown to be largely consistent
with the MPL function. In the hierarchical structure of written discourse, string lengths—lengths of
words, phrases, sentences—follow lognormal distribution. Two models for the lognormal distribution
are presented: one based on Information Theory and the other, an evolutionary model, based on the

theory of proportionate effect.

1. Introduction

Statistics of word frequencies in language have been
studied from the beginning of this century. Following
Dewey’s? classic work of 1923, major statistical analysis
of word frequency data was done by Zipf® in The
Psychobiology of Language.in 1935. Striking regularities
in the frequency distributions of words were noted 1n
diverse literary styles, authors and languages. Zipf*
extended the statistical studies to other areas of
behavioural science—beyond language—in an elabo-
rate work: Human Behaviour and the Principle of Least
Efjort. The same rank frequency law observed for words
is seen to be applicable to diverse areas of social
behaviour. The law known as Zipf’s law is indeed a
robust one,

Zipf's law is equivalent to a power law distribution
given by

Wik)=Ck™?, (1.1)
where W(k) is the number of different words (word-
types) occurring k times in a discourse of words. C and
4 are constants with y =2.0.

A mode! for rank frequency distnibution of words,
based on Shannon’s Information Theory®, was pro-
posed by Mandelbrot®, The model uses the letter or
alphabet as the primary symbol and is applicable to
written discourse. Recently, we! have proposed another
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model based on Information Theory, using the word as
the primary symbol, which 1s applicable to spoken as
well as written languages. We obtain a power law
function modified at low frequencies (small k)

Wik)=Ce #* k= (1.2)

with C, u, y constants. Deviations from pure power law
(k™7) observed at low &k are accounted by the
exponential term. A detailed comparison of this model
with Mandelbrot’s model is given in ref. 1.

In section 2 we have tested the ‘goodness of fit’ of
equation (1.2) to word frequency data from ten different
discourses (section 2.1). With few exceptions the data
are seen to be largely consistent with the MPL {unction
giving support to the model. The numerical values of
entropy and ‘degencrate entropy, a new quantity
introduced in ref. 1, are presented in section 2.2.

We deal with the hierarchical structures of language
in section 3. Starting from the alphabet, the successive
agglomerations are the morphemes, words, phrases,
sentences, paragraphs, ete. These structures are defined
as strings; each string contains a number of units
belonging to the immediate Jower hicrarchy, defined as
string length. These string Iengths-—e.g. the number of
letters per word, the number of words in a phrase,
cte.—are known to follow a lognormal distribution,
We present someinstances of string length distribution
(section 3.1) and for the first time provide some data for
an Indian language (Tamil), In scction 3.2 we discuss
two models for the lognormal distnibution of string
lengths, one based on Jaformation Theory and the
other on the theory of proportionate effect, Section 4
contains some  peneral comments and  includes  a
summary.
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2. Data on word frequency distributions

Extensive studies on word counts in various languages
by diflerent authors and in diffcrent types of mat-
erials**%~® have established a statistical law for the
number of word-types H{A) occurring & times (equa-
tion (1.1)). Deviations occur at small as well as large k. In
fact, the law seems to be of almost universal validity.

Word frequencies are usually represented as frequencies
of occurrence of words by rank (r)*4. All the V word-
types in a discourse of N words are ranked 1n
decreasing order of occurrence. The word of rank |
(r=1) occurs the maximum number of times (k_). All
words which occur the same number of times are given
consecutive ranks arbitrarily. p(r) is the number of
occurrences of a word of rank r. The range of r is
I <r< V. Zipl® found that

p(ri=Ar (2.1}

with the constant A~ N/10. This is known as Zipf's law.
Equation (2.1} does not usually fit the data for low r.
Mandelbrot’s rank frequency relation®

p(r)=A(r+ry)~* (2.2)

with r,, B constants, gives good fit to data at low r. Qur
information theoretic model gives a modified power
law function {(equation (1.2)) which accounts for observed
deviations from pure power law ar low k. Since low k
corresponds to high rank, equations (2.2) and (1.2)
represent deviations from power law at extreme ends of

Table 1.

the frequency range of k. Note that equation (1.2)
reduces to the empirical (1.1} when u=0.

The rank distribution p(r) is unsuitable for statistical
tests of ‘goodness of fit’ to a hypothesis since the p(r)
values for r=1,2,---,V are not statistically independent.
The differential form W (k) of equations (1.2) or (1.1} is
better suited for statistical analysis®.

2.1 Test of MPL function for word frequencies

We have used data on word frequencies for ten different
samples of discourse to test the validity of the MPL
function (equation (1.2)). The samples are: (1) Nouns
(Julius Caesar, Shakespeare®); (2) Nouns {As You Like
it, Shakespeare®);, (3) Nouns (Essay on Bacon,
Macaulay!?); (4) Colloquial Chinese (Peiping dialect’);
(5) Story in Russian (Pushkin*'); (6} Four plays in Latin
(Plautus®); (7) American Newspaper English’; (8)
Ulysses (novel by James Joyce*); (9) Complete works
of Shakespeare'?; and (10) The Indus text'?. These are
used to represent a variety of languages, styles, types
and sample sizes of written material (see also
Naranan®).

Equation (1.2) can be linearized for multiple
regression. The best fit parameters C, 4, 7, their errors,
the x? statistic, n,, the number of degrees of freedom
(number of data bins minus 3) and P(x?) the probability
of a deviation exceeding y? are given in Table I
(columns 6,7,8,9 and 10). [Equation (1.2) is obtained

Parameters of word frequency distribution W{k)=Ce™* k=7 F (), F (k)= (ke'/t%)1 -2k
—

5 C u ¥ x*

Iscourse k. V N NV {AC) (&) (Ay) (M0 P(x?)

Juhus Caesar® 49 064 2849 2.955 1984 1.202 2.320 11.6 0.20
(Nouns) (125) (965) (2919}  (3.025) (502) (024 (0.24) (8)

As You Like It® 59 1239 3421 2.761 2307 1.034 2.350 35 0.90
{Nouns) (113) (1241) (3609) (2.908) (513) (0.22)  {0.09) (81)

Macaulay!? 89 2047 7790 3806 3721 1.230 2.152 16.2 0.50
(Nouns) (255) (2048) (8045) (3.928) (553) (015 (0.06) (17)

Chinese? 101 3330 10654  3.199 2647 0.173 2.022 24 3 0.20
(905) (3342) (13,248) (3.964) (333) (013) (0.05) {19)

Russian!? 40 4698 15611 3.323 BiR8S 1.131 2.176 2867 .10
(7) (4783) (28,5%1) (5.978) {(842)  (0.11) (004) (19)

Latun? 61 8366 22,931 2.741 5432 —0.085 2.007 16.9 0.75
{514) (8437) (33,094) (3922 (463) (G 09 (0.04) (22)

Eldridge’ 60 5930 20,734 3496 12113 1.299 2.239 16 5 0 80
(4290)  (6001) {43,989) (7.330) {1059)  (0.09) (0.04) (22)

Joyce* 50 27,772 71,397 2.571 23,576 0288 1.945 564* =~0005

U {29.899) (260.430) (8.710) (1229)  (0.05) (0.02) (21)

Shakespeare!? 100 30,688 194667 6343 15364  0.020 1.604 39.2€¢ 020
() (31,534) (884.647) (28 05) (490) {0.03) (0.01) (33)

Indus Text!? 381 415 11,328 27.30 173 0.436 1.360 16.8 0.30
{1395) (417 (13,372) {32.07) (37) {0.24) (0.06) (15)

+W|th;ut the last two bins (k< 30), x2=204, ny =17, P(y*)=0.25.

T i el ——ey e ——

*Omitting W{2) and W(5) x*=29.1, n ;. =19, P(x*}~005.

2Omitting the last five bins, (k< 60), ¥*=22.6, n, =28,

P(x*=0.75.

Numbers in parantheses in columns 2-5 refer to totat data,

298

CURRENT SCIENCE, VOL, 63. NO. 6, 25§ SEPTEMBER 1992



GENERAL ARTICLES

using Stirhing’s approximation for large k. Using the
more accurate Stirling’s approximation, the right-hand
side has a multiplying term F (k)= (k e!/SK)1 =02k (ref 1),
This requires that C, y, p are determined by using a
method of successive approximation. The values in
Table 1 arc obtained by such a method.] Columns
2,3,4 respectively give the maximum frequency of
occurrences of a word (k_), the size of the vocabulary
(V) and the total number of words (N} in the discourse
used for fitting the data to equation (1.2). The
distributions of word frequencies for the ten discourses
are given in Figure | a-d.

For all the discourses, the total available data on word
frequencies have been used for the analysis. In eight of the
ten discourses (exceptions being Joyce and Shakespeare)
the difference between the total number of word-types
and the number used for analysis is very small. For
Joyce, the excluded word-types constitute 7.1% of the
total vocabulary but account for 72.6% of the total
number of words. For Shakespeare, the corresponding
figures are 2.7% and 78.0% respectively (see Table 1).

For the eight discourses, the x? values are acceptable
at 20% significance level or better— very satisfactory
for not rejecting a hypothesis. For Joyce ¥*=356.4 for
ny= 21, with just two bins W (2) and W (5) accounting
for nearly half of the y? (see Figure 1l¢). For
Shakespeare y?=39.2 for ny,=33. Here, the last five
bins (k> 61} contribute the maximum; when they are
excluded x2=22.6 for ny=28 with P(x*)=0.75. Using
the C, u, ¥ determined for Shakespeare, we calculate
that W(k>61), the expected number of word-types
occurring >61 times 1s 2124 whereas the ‘observed’
number is 1286, clearly indicating that equation (1.2) 1s
not a good fit for the most frequently used words with
k>61. Similarly for Joyce the ‘expected’ and ‘observed’
word types W(k>50) are 619 and 2127 respectively. In
the two cases, the deviations are in opposite directions.

The reasons for the deviations could be several. Both
Joyce and Shakespeare are exceptional in their usage of
words and their works could be atypical of the general
Enghsh literature in respect of word frequencies. It s a
common experience in behavioural sciences that the x?
statistic tends to be higher {relative to ny) for larger
sample sizes. Joyce and Shakespeare sample sizes are
the highest with N =260, 430 and 884, 647 respectively
(Table 1). It has already been noted that Zipl's law
generally fits the observed word frequency data for
N 2 10° (ref. 14). It will be interesting to examine if
smaller subsets of Joyce and Shakespcare works give
hetter fit to MPL function in terms of x? valucs.

The texts of the early urban culture of the Indus
civilization date back to 2300-1750 BC. The writings
on seals comprise 417 different signs (V') and 13,372
legible sign occurrences (N). The text has an unusually
high N/V ratio (~30) and low index y (1.3610.06)

CURRENT SCIH NCF, VOL.. 63, NO. 6, 25§ SFPTEFMBLR 1992

compared to other discourses although the y? (16.8) for
ng= 15 is well within acceptable values (Table 1). Two
noteworthy facts about the text are the following'>:
(1) 112 signs (=~27% of the total) occur only once each;
most of them are compounds of two or more other
signs and their independent status as different signs is
doubtful, (i) the most frequently occurring signs show
considerable graphic variations; all the variants of a
sign are rcgarded as a single sign.

According to Subbarayappa'!> a large fraction of the
[ndus signs are numeric signs; it 1s conjectured that the
Indus texts are records of commercial transactions of
agricultural and other products. Since numeri¢c symbols
may have a frequency distribution very different from
that of linguistic symbols, the observed index y may not
be typical of linguistic texts. If all numeric signs can be
identified and excluded, the index y will most likely
Increase towards 2.

We have examined the frequency distnbution of
digrams in English (Gaines'®). The number of digrams
V=430 and sample size N=10,000. The data for k<132
give a very good fit to the MPL with V=422, N=28249,
C=264+14 u=170£029, y=135+007, P(y*)=0.08
and n = 16. It is very interesting that ¥, N/V and y are
very similar to the values for the Indus Text, suggesting
that most of the signs in the Indus Text are very likely
digrams or compound symbols, supporting Mahadevan!?,

From Table 1 we note the following:

(1) In eight of the ten discourses, y varies from
1.95+£0.02 (Joyce) to 2.35£0.10 (As You Like It),
not significantly different from 2.0. For Shakespeare
y=1.6010.01, significantly different from 2.0 and the
lowest y (1.36 £ 0.06) 1s for the Indus Text.

(2) The value of u ranges from —0.09x0.09, consis-
tent with 0 (Latin) to 1.30£0.10 (Eldridge). The most
significant positive u values are for Eldridge, Pushkin
and Nouns (Macaulay, Shakespeare) with 1.0<pu<1.3.
>0 signifies fewer words occurring rarely (small &)
than implied by a power law, whereas ;<0 implies the
opposite.

The effect of the correction factor F (k) for equation
(1.2) is to increase slightly u and y and reduce x>
Without the correction, the range of uis —0.4<u<09
and y i1s lower by ~Q.1. It s noteworthy that the reduc-
tion in x? is significant especially for discourses with
relatively large yx*. For example, for Shakespeare,
without the F(k) term x*=154.2 much higher than 39.2
oiven in Table 1. This can be regurded as an additional
support for our model of word frequencies’,

We therefore conclude that the MPL function does
indced describe the word frequency data adequately
with y2>2.0 and 0<p<1.3 with a lew exceptions noled
regarding deviations for large [requencies.
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Figure 1. Word frequency distiibutions for ten discourses. W(A) 1s the number of word-types occurnng exactly k times. a.

A Eldndge, & Macaulay, B As You Like It, O Julus Caevar: b, @ Lauin, 8 Chinese, & Shakespeare; ¢, A Joyce, A
Russian; d The Indus Text. (see Table 1 and section 2.1)
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2.2  Entropy and cost of encoding the discourse

We have proposed an information theoretic model for
word frequencies!. The essential features of the model
are as follows. For a discourse of N words with V
word-types and entropy H (Shannon’s information),
using words as primary symbols, we define a quanfity
called ‘degenerate entropy’ Hp,. This is the entropy for a
‘degenerate’ discourse in which word-types occurring
with the same probability (same k) are regarded as
indistinguishable. The optimal word frequency distn-
bution is the one that maximizes the entropy H, given
N, V, and Hy, It is gtven by
Wk)=Ce **k, (1.2)

where W (k) is the number of word-types occurring k
times. The quantities N, V, H and Hy, are defined as

V=3 Wk
N=Xk W&
H=K[NinN-kWk)lnk]/N

Ho=K[NInN-ZkW(k)Ink Wi{k)}/N. (2.3}
Here, the summation X is over the range 1 <k <k_.
The scale factor K=log,e=1.443. H and H are in
units of bits per word.

We have used the actual word frequency data to
calculate the entropy H and the degenerate entropy Hy,
for eight discourses. Joyce and WShakespeare are
excluded because, as already noted, the available data
on word frequencies are incomplete. H and Hp are
given in columns 3 and 4 of Table 2. The maximum
value of H, H_, (=log, N) is given in column 2. The
difference H__, —H is a measure of the information
content manifested in the discourse due to the non-
uniform distribution of word frequencies. This leads to
a quantitative measure of ‘redundancy’’

which 1s given in column 3.
The following remarks apply to the seven discourses

(24)

max)

Table 2. Entropy (/1) and degenerate entropy (1) paramecters

Discourse H_ . H Hy Ry,

Jultus Caevar® 11.51 8.23 4.3} 0.280
As You Like 1t® 11.82 857 445 (0.274
Macaulay'®? 1297 9.36 503 0.278
Chinese’ 13.38 9 89 493 201
Russtan’'! 13.93 10.74 465 0.234
Latin? 14.48 11.32 4 68 (0218
Eldridpe’ (4,34 {100 493 3133
Indus Text!? [3.71 6.54 6Ol (323
Mean® PR L 4.71 {} 254

. ¥ -

*Eoacluding bndus Text,
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in Table 2, excluding the Indus Text, which we have
seen to be atypical. H ranges from 8.28 (Julius Caesar)
to 11,32 (Latin} with mean 9.88. H, varies Irom 4.31
(Julius Caesar) to 5.03 (Macaulay) with mean 4.71, The
difference between H and Hy is the difference in the
costs of encoding the discourse and the corresponding
‘degenerate discourse’, Note that the variation in Hy 15
less than the variation in H: within £16% for H and
within £ 7% for Hy. The redundancy R, ranges from
0.218 to 0.280 with a mean 0.254, the vanation being
within £+12.5% of the mean.

3. Hierarchies of language symbols —some
statistical laws

So far we have considered, only the {requency
distribution of words in a discourse, and scen that a
power law relation modified for low frequencies, such as
equation (1.2) describes the data adequately.

Statistical studies have also been done on the
language symbols at different hierarchical levels—starting
from letters and moving up to syllables (phonemes),
words, phrases, sentences, paragraphs, etc. The distribu-
tion relevant for these is the lognormal distribution’®. A
variable x is lognormally distributed if z=Ilnx 1s
normally distributed. The probability density function
1S given by

dA(x) = (1/a/2) (1/x)

exp [—(In x— w)?/2¢%] dx(x>0) (3.1)

with # and o completely specifying the distnbution.
They are the mean and standard deviation of the
normal variate z=In x.

A large number of statistical studies of hierarchical
language symbols have been summarized by Dolby'®:
“ .. words are formed by variable length strings of
alphabets, phrases are then constructed as strings of
words, sentences as strings of phrases, paragraphs as
strings of sentences and so on. This process of
successive agglomeration occurs with great statistical
accuracy. (1) The frequency distribution of string length
is well approximated at every level by the lognormal
distribution. (2) The mean () of the lognormal
distribution is constant when the mcasvrements are
made in terms of next lower level: e.g. the mean number
of sentences per paragraph is the same as the mean
number of phrases per sentence cte, The constant will
vary from one type of text to another but appeirs to be
~ 2¢ (5.4) for non-fiction hbrary matenals. (3) The
variance (#%) of the lognormal distribution 1s also
constant...the cocfficient  of yatiation  {y-=f2) 13
constant on the original scile of measurement. 1t 1s also
a function of the type of teat studicd, but appears to be
0.25 10 0307
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The mean z and the standard deviation § of the
Jognormal variate x are related to u and o, the mean
and standard deviation of the normal variate z(=1n x):

x = exp [(u+{(c22)). B=alexplot)—1]'*?

n=pf a=[explo”)—-1]" % (3.2)

3.1 Test of lognormal distribution of string lengths

We test the hypothesis of lognormal distribution
following Aitchison and Brown'®. The distribution

Axi o) =Pr [ X < x] (3.3)

corresponds to a normal (Gaussian) distribution

function

Nl o) = Pr{Z<:] (3.4)

with z=In x. The standardized normal distribution
with mean O and standard deviation 1 s

N(10)= [l/6./(2R)] j; exp (— y%/2) dy (3.5)
where the standardized normal variable y is given by

y={z—pwoorz=o0yt+u {3.6)
From the data, for a given value of z (=In x), the
corresponding y can be obtained from standard Tables
of the normal distribution. For a lognormal distribution a
plot of In x vs. y i1s a straight line with slope ¢ and
intercept ¢ on the ordinate axis. For dealing with
discrete values of x, we adopt a prescription of J. L.
Williams described by Aitchison and Brown'®, The
estimates of 4 and ¢ given in Table 3 (see below) are
obtained by linear regression.

. Wiy

Table 3. Lognormal distnnibution A(X | u, o) of string lengths

We describe a few specific examples of string length
distributions. The number of letters in a word is known
to be lognormally distributed?®. Herdan?! finds the
word length distibution of 738 most commonly
occurring words in telephone conversations is lognormal
with u=1.62 and ¢=0.39. The word length distribution
in a dictionary as well as discourse is lognormal.
Kaeding's data on the distribution of number of
syllables in German words quoted by Zipl® cover 20
million syllables in a discourse of 10,910,777 words.
(For the sheer size of the sample used, this perhaps
holds the record in linguistic studies) We have
estimated the lognormal parameters y, o, the mean g,
standard deviation 8 and the coefficient of variation #
for these samples (Figure 2 g and Table 3), The sentence
length Aistributions (Williams2?) for samples of 600
sentences each from the writings of (G. K. Chesterton,
H. G. Wells and 1. B. Shaw fit lognormal distribution.
The parameters estimated by Williams are also
included 1n Table 3.

We are not aware of any data on string length
distributions in Indian languages. For a start, we have
obtained the word length and sentence length distribu-
tions for two discourses in Tamil, The results are glven
in Figure 26 and Table 3. The lognormal fits are
satisfactory. In the case of word length distribution (B’
in Figure 2 b), the last three points which deviate from
the line account for only 2% of the data. Note that u
and ¢ (1.43 and 4.52) for word length distribution 1n
Tamil are somewhat higher than corresponding values
for English (1.18 and 3.57), (The mean word length for
English is usually quoted as 4.5 (ref. 14) similar to the
value for Tamil. The lower value 3.57 in Table 3 refers
to the 750 most frequently used Enghsh words.) The

_— PR —

Stnng X

Language {text) (String length) N i o o B n Rel.

English Word 387 196 034 7.48 260 Q.35 20
{Dhictionary) Number of

Enplsh Word* letters 75,624 1.18 0.44 3.57 1.66 0.46 20
{Dscourse)

German Word Number of 10,906,235 0.54 0.48 191 096 (.50 3
{Discourse) syllables

Englsh Sentence 60 3.16 046 26.1 127 049 22
(Chesterton)

English Sentence Number of 600 302 (55 237 140 059 22
(Wells) words

Englsh Sentence H00 120 0.67 30.7 23.0 0.75 22
{(Shaw)

Tami Word Number of 835 143 0.40 4.52 188 042 This
{Dhscourse)t letters wark

Tamil Senlence Number of 799 2.04 0.56 9.00 549 D61 This
{(Dhacoutse)'e words work

ey ey S P

For comments on estimales of errors of g, ¢, & § see text.
N =Number of strings in the sample.

*Dewey’s daia quoted in ref, 20 for 750 most frequently used words.
YText. Arunachale Mahimat (a biography of Ramana) by Bharamidharan, vol. 2, Ch. 1, 2.

@ Text. Venkatam mudal kumari varar {on temples of South India) by Bhaskara Thondatman, Ch. 1.

CURRENT SCIENCE, VOL, 63, NO. 6, 25 SEPTEMBER 1992




GENERAL ARTICLES

2 2} /
2 o}
18}
i 6
Lis
1 2F

10

A
O 8r
Qe
8
l
-1

0 4 ! i

C
|
1

e O s

b
4T T )
|
3t —
r i
e
. ”
o ] £
_ o ° ]
o
ad o —
= -
1 / -
. e
- , 'f -
7 -
- . e -
‘o
A B
D H ] | i | | | ]
-3 -2 -1 0 [ 2 3

Figure 2. Graphical test of lognormal distribution of string length x, y 1s defined by equation (36) and z=In x. a, A:
x=npumber of letters in word, text: dictionary {English}; B: x=number of letters in word, text: discourse {(Enghish};, C
x=number of syllables in word, text: discourse (German). b, A: x=rnumber of words in a sentence, text: discourse (Tamil}; B:

x=number of letters in word, text: discourse (Tamil).

parameter ¢ is however similar in both (0.40 for Tamil
and 0.44 for English). For sentence length distribution
im Tamil =20 and «=90 much less than the
corresponding values for Chesterton, Wells and Shaw
(W=30~32, a=26—31). Again o for Tamil (0.56) is well
within the range for English authors {0 =0.46-0.67). It
would be interesting and perhaps more relevant to
compare the sentence length distribution in Tamil with
simtlar one for modern English literature. The coeflicient
of variation 5, which depends only on o (equation (3.2)),
Is the same for Tamil and English discourses.

Assuming that the lognormal distribution is a good
description of the data, one can estimate u and ¢ and
the errors Ap and Acg using the maximum likelihood
(ML) method??. These estimates are given by

Hayy = CIn x ), Aﬂ_—_}‘ML/\/ﬁ (3.7)

o 2= (In? x>~ {In x>2, AaMngML/ﬁiﬁj,g
(3.8)

where N i1s the sample size. From the sample sizes in
Table 3, it 1s scen that the fractionsl errors Apy,, fp0
and Aoy, /oy, are at the most a few per cent,

3.2 Models for lognormal distribution of string
lengths in discourses

There is so far no satisfactory theory {or the loghormal

CURRENT SCHLNCE. VOL. 63, NO. 6, 25 STPTI MBI R 1992

distribution of string lengths in language. We present
two models —the first based on a hypothesis invoking
Information Theory and, the second, a more general
theory based on the theory of proportionate effect.

3.2.1 Model based on Information Theory

The prncipal 1dea for the model derives from
observations by Herdan?! on the distribution of
number of letters 1n a word (i) in a dictionary as well as
a discourse. (In a discourse the words occur with a
frequency W(k), whereas in a dictionary, cach word-
type occurs only once) Herdan found that both the
distributions are lognormal. Further, the same is true
for the distribution of the number of phonemes in a
word. Herdan’s explanation is based on twa facts:

(I} The moment of a lognormal variate is also a
lognormal vanate. In particular the jth moment of a

lognormal distribution  A{x|g,¢%) is a lognormal
distribution A, (xlg', a'?), where
W=pu+jal o'=0. (3.9)

(2) The probability of occurrence of 4 word with m
letters in 4 discourse

pmy=am™’ (3.10)
with a and 1 constants, From data 1> 2.4

I
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If A(mi,o?) is the lognormal distribution in a
dictionary, then it has to be weighted with the function
p{m} to obtain the distribution i1n a discourse. Since
p{myoc m™', the distnibution will be a lognormal with
j=—1=~-24

(3.11)

Herdan finds that the observed u, &, o, ¢ satisly
equation (3.11) remarkably well.

Equation (3.10) 1s a result of the well-known fact that
short words are most frequent. For example, the 50
mosi frequently used words in English —accounting for
a large fraction of discourses—are all monosyllabic.
This is a principle of ‘least effort’ which is widely
applied in all coding schemes—from the Morse code
(where the most commonly used letter.'e’ 1s represented
by a single dot), stenography (where the most
commonly occurring word ‘the’ is again represented by
a dot) to the Huffman code (ref. 14) in which the most
frequently used symbols are assigned the smallest
number of bits.

If we assume that all string lengths are distributed
according to equation (3.10)—te. the number of
phrases with w words, number of sentences with p
phrases, e¢tc. ar¢ given by an equation similar to
(3.10}—then 1t follows that.a Iognormal distribution in
a ‘dictionary’ (of phrases, sentences, etc.) will transform
as a lognormal distribution in the discourse as well. As
we move up in the hierarchy of symbols, dictionary and
discourse are not very different and the exponent ¢ in
equation (3.10) will tend t0 0, making ' =u and 6=v".

Now, it only remains to explain why a lognormal
distribution applies for a dictionary. It is an interesting
fact that both the lognormal variable and the entropy
involve logarithmi¢ functions, and the following model
15 suggested.

The entropy of a symbol i occurring with probability
pi is the logarithm of the number of different possible
occurrences of the symbol and 1s log,(1/p). Averaging
over all the different symbols (n)

W=u—240¢% oc'=g.

H=— i p; log, p, bits per symbol  (3.12)

I=1

the standard expression for the entropy H. The entropy
of a word of m letters, H(m) is

H(m)= —log,p(m). (3.13)
Using equation {3.10)
H(m)= —log,a+tlog, m (3.14)

implying that H(m) is linearly related to log m.

In general, a word 1s formed according to the general
rules applicable to the language. Often longer words are
derived from other words (such as ‘motherhood’). The
number of rules and restrictions due to semantics,
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syntax, etc. in forming words are many; so we can
consider a word as governed by the random collection
of the information-constituting symbols (alphabets or
phonemes) which, by the Central Limit Theorem,
would constitute an ‘information string’ with a
Gaussian (normal) distribution. If we stipulate that the
ubiquitous normal distribution applies to H(m), the
entropy or information content of the word, then it
follows that m is lognormally distributed. From
equation (3.14)

log, m= [H (m) + log, al/t. (3.15)

Specifically, if H(m) is normal with mean h and
variance s, then log, m 18 normally distributed with
mean K’ and variance s’ given by

= {(h+log, a)ft, & =s/t>. (3.16)
The total entropy of the discourse is
H= ) p(m)H(m).
m=1
Substituting eqution (3.14) and using X p(m)=1,
H=—log,a+t{log, m), (3.17)

Since the maximum likelithood estimate of pis {Inm>
(equation (3.7)) the entropy H is linearly related to u.

As already noted, the above model applies for all
string lengths, if they are distributed according to an
equation stmilar to (3.10).

3.2.2 Theory of proportionate effect

An alternate model of lognormal distribution of string
lengths 1s provided by the ‘theory of proportionate
effect’ (see Aitchison and Brown'®). In a discourse,
strings grow in size by aggregation. A string of some

mitial length X, grows to length X in n steps and at
the jth step

X~ X, 1=¢X;_q, (3.18)

where ¢'s are mutually independent random numbers.

The change at any step is proportional to the value of
the vaniable at that step. Then

(3.19)

For infinitesimal steps, the left-hand side is replaced by
the integral

[dX/X =1n X,~1n X, (3.20)
giving
In X, =InX,4&, +e,+...¢,. (3.21)

By the Central Limit Theorem, In X is asymptotically
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distributed normally and hence X, is lognormally
distributed.

This model 1s more general than the hirst model
{(section 3.2.1} and can be applied to a discourse directly
without involving the dictionary. But it implicitly
assumes that step increases in length are proportional
to the ‘current’ length. On the other hand, the
information theoretic model makes a plausible
assumption that the entropy or information of a string
follows the canonical normal distribution; coupled with
the observed power law relation between string
frequencies and their length (equation (3.10)), this
assumption leads to a lognormal distribution of string
lengths.

The two models described tfogether suggest a
rationale for equation (3.10) which embodies the
principle of least effort in some sense. It can be shown
that it follows from two hypotheses: (a) the entropy of a
string is normally distributed, and (b) strings grow by
the proportionate effect.

4. Discussion and summary

We have proposed a new model for the distribution of
word frequencies based on Shamnon’s Information
Theory!. It is different from earlier models in two
essential ways: (a) it uses the ‘word’ as the primary
symbol, (b) it defines a cost function related to the
‘degenerate entropy’ of the discourse. The entropy of
the discourse (H) is maximized under given constraints
of the size of the vocabulary (V), the size of the
discourse (N) and the degenerate entropy (Hp). The
optimal word frequency distribution is

W(k)=Ce " k™, (1.2)

where W(k) is the number of word-types occurring
exactly k times. C, g, y are constants. Equation (1.2} 15 a
power law modifted at low frequencies (small k).

(1) The MPL function (equation (1.2)) has been
tested for data from ten different samples of discourse
covering a wide range of languages, authors, style and
hterature {Table 1, Figure 1). The parameter u, which
determines the behaviour of equation (1.2) for small k,
tanges fromm 0 to 13, u>0 mplies & resincled
vocabulary and p <0, a prolific vocabulary. The index
7~20 with two prominent exceptions {Shakespecare and
Indus text). g and y are quantifiers of author’s
vocabulary with g being more variable than yp. Only
two samples (Shakespeare, Joyce) show significant
deviations from the MPL function, especially for large &.
While the low 7 for Shakespeare (1.60 2 0.01) could be
attributed to the author's style, the low value for the
Indus text {y=136+006) could be due to several
unknown factors about the signs themselves, eg.
compound symbols, graphic variants and possible large
admixture of numeric symbols with linguistic signs.
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(2) H and Hp for eight discourses (Table 2) show
small variation from sample to sample. ( H >)=9.88 and
{ Hp>=4.71 bits per word. The latter corresponds to
0.86 bits per letter for the English language, compatible
with the ‘experimental’ value (0.6-1.3) of Shannon’.
This could be a fortuitous coincidence.

(3) In the hierarchical structure of language, string
lengths —such as the number of letters per word,
number of words per sentence—are known to conform
to a lognormal distribution. Actual lognormal fits to
some already existing data are demonstrated (Figure 24,
Table 3) and for the first time new data are given for an
Indian language (Tamil, Figure 2 b, Table 3).

(4} Two different models for the lognormal distribution
of string lengths are presented: {a) In the information
theoretic model, it is postulated that the entropy of a
string 1s normally distributed. This, coupled to the fact
that string frequencies (by their length) are given by a
power law, leads to a lognormal distribution of string
lengths (section 3.2.1). (b} In the theory of proportionate
effect, it is assumed that strings grow or evolve in a
stochastic process with an infinitesimal increase at every
step being proportional to the string length at that step.
This leads—by the Central Limit Theorem—to a
lognormal distribution of string lengths (section 3.2.2).

Lognormal distributions are encountered frequently
in physical, biological and behavioural sciences. For
methods of testing lognormal hypothesis, parameter
estimation and an extensive bibliography, see Crow and
Shimuzu®*, For an illuminating study of ‘long-tailed’
distributions —especially the lognormal—in condensed
matter physics, hydrodynamics and astronomy, see
Zeldovich, Ruzmaikin and Sokoloff*3. The authors refer
to the phenomenon responsible for lognormal distribu-
tion as ‘intermittency’ and the theory is closely related
to the theory of proportionate effect. The connection
between the lognormal and the power law (also referred
to as ‘1/f noise) distributions—both long-tailed
distributions-—is discussed by Montroll and Shiesinger?®
and it is applied for studies of surface growth and directed
polymers by Yi-Cheng Zhang?’.
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Glucocorticoids: The anti-inflammatory agents

K. K. Mishra and H. P. Pandey

Four decades have passed since the discovery of anti-inflammatory effects of glucocorticoids, yet the
function of these compounds has remained an enigma and eluded the scientific community. However,
glucocorticoids exert profound suppressive effects at almost every step of inflammation and they

have a significant therapeutic role in medical practice. This article is an attempt to give a generalized
account of glucocorticoid action at a molecular level.

One of the most important effects of glucocorticoids
was discovered almost by chance in the late forties
when it was observed by Hench et al' that
administration of cortisone reduced the severity of
disease in patients suffering from rheumatoid arthritis.
This discovery led to the Nobel prize for medicine in
1950, and called global attention to the anti-inflammatory
eflects of glucocorticoids. Since then, four decades have
passed yet the anti-inflammatory effects of glucocorti-
coids are still not {ully understood and atre ruled out by
some as pharmacological side-effects?, produced by
overdoses of hormone. Virtually it was Hench who in
1929 noticed that the condition of his patients with
rheumatoid arthritis improved if they became pregnant
or jaundiced. He thought that it might be due to a
hormone from the adrenal cortex but he had to wait till
1949 to test his hypothesis when he with his colleagues
synthesized cortisone. Administration of cortisone brought
about rapid relief of the symptoms of rheumatoid arth-

K. K. Mishra and H. P. Pandey are in the Department of Biochemi-
stry, Banaras Hindu Umiversity, Varanasi 221 005, India.
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ritis®, For this remarkable achievement, Hench and his

associates, Kendall and Reichstein, were jointly awarded
the Nobel prize.

Inflammation and its mediators

Inflammation, stated to be an essential prelude to
healing, ts the response of living tissues to injury. It is
characterized by redness, heat, swelling, pain and loss of
function. Redness and heat are the manifestations of
increased circulation resulting from vasodilation. Swelling
results from collection of protein-rich exudates because
capillaries and venules become leaky to protein due to
vasodilation. Chemical products formed after injury
produce pamn. When microorganisms breach local
defences at skin and mucosal surface, systemic reactions
are set off to destroy the foreign invaders, which result
in inflammation. Inflammation mainly stems from the
ellects of mediators involved in the body’s defence
mechanism*®. Immediately after injury, the white
blood cells rush to the site of injury to protect the
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