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1. Historical introduction

I should say at the outset that this i1s not meant to be a
complete history of the theory of Riemann surfaces and
is a patchwork of my knowledge of the development —
hence it is occasionally historically incorrect and
sometimes even anachronistic. Naturally it reflects my
own biases.

In a sense the theory of infinite senes 1s the
predecessor of the theory of Riemann surfaces. Infinite
series were extensively studied by Euler. He showed
how every ‘interesting’ function could be calculated
using infinite series and all interesting operations like
integration, differentiation and so on can be carried out
using series.

The theory of infinite series had its logical (but in no
sense obvious!) development into the theory of
functions of one complex variable under Riemann,
Cauchy and later Weierstrass. Instead of series being a
means to compute functions, it turned out that if one
was concerned with complex valued functions of one
complex variable, then infinite series and functions were
Tocally’ interchangeable notions. From this ‘local
starting point Riemann was able to develop the
corresponding ‘global’ notion—the concept of a
Riemann surface. This in turn raised numerous
problems in the theory of functions of one complex
variable — with geometry being the predominant theme.
To solve many of these Riemann introduced (in analogy
with the complex torus associated with elliptic functions
studied by Abel and Jacobi) a certain torus naturally
associated with a compact Riemann surface, nowadays
referred to as its Jacobian. A vital tool in the study of
this torus and the associated Riemann surface was
Riemann'’s theta function, a function of several complcx
variables. The Riemann singularity theorem showed how
the singularitics of thc zero locus of this function
yielded results in function theory,

Much of Riemann’s thcory was left incomplcte due to
his early death (and possibly due to a profusion of 1deas
far too numerous for him to completely elucidate for his
contemporarics). It was left to Weierstrass, Poincaré,
Klein and Weyl to fill out the outlines of the function
theoretic aspect. At this point we see a branching of the
theory of Riemann surlaces into two streams. From the
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point of view of function theory, compact Riemann
surfaces appeared to be completely understood and this
led Teichmiiller, Ahlfors and others to devote their time
to non-compact surfaces. We shall not follow this
interesting stream of thought.

Through Riemann’s work it was clear that if the
Riemann surface associated with a function f 1s
compact, then fis an algebraic function of z. Hence we
may assoclate a projective (algebraic) curve to a
Riemann surface. Geometers like Max Noether, Schubert
and others had built up an impressive amount of theory
from this geometric point of view. The work of Baker,
Emil Artin, Emmy Noether (daughter of Max) and
others brought a distinctly algebraic flavour to this
subject. This algebraic aspect was more fully laid out by
Zariski and Chevalley. Along with many others (Weil
and Chow being among the prominent} they put
together the foundations of algebraic geometry. Almost
before this work was complete however, Alexander
Grothendieck re-wrote their foundations and built
upon these foundations far-reaching generalizations of
many of their ideas. Following Grothendieck’s approach,
Mumford completed the geometrization of the entire
theory of Riemann surfaces, including the Jacobian and
the theta function so that the whole theory was now
workable for curves over any field {or ring!). The
succeeding work of Kempf, Griffiths, Harris and others
made it appear that all outstanding geometric problems
from the theory of curves had been solved.

Since the sixties there had been a group of mathe-
maticians in India—C. S. Seshadn, M. S. Narasimhang,
S. Ramanan and others —who had begun (with a paper
of Weil) to study rector bundles on Riemann surfaces to
generalize the notion of the Jacobian. Already iIn the
scventies the work of Krichever (which was partly the
rediscovery of some work of Baker and his students?)
and later Drinfeld had shown how the study of vector
bundles on curves led to applications in other areas of
mathematics (like the solutions of certam  partial
differential equations). In a prolusion of papers in the
cighties the theoretical and mathematical physicists
(notably string theorists) have shown a great interest sn
these problems; firstly for the theory of solitons and
later the questions about modudi. Combining the work
of the analysts and the peometers, Wolpert, Hurer,
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Miller and others could prove many interesting
properties about the moduli space of Riemann surfaces.
(his work had a combinatorial flavour which has been
further eapanded in the work of the string theorists.

So in some scnse we have reached a third phase in
the theory of Riemann surfaces where the function
theory and geometry of Riemann surfaces are so well
understood that one can begin to study the moduli
space from a computational and combinatorial point of
view. This is not to say that no problems in the analytic
and geometric aspects remain— but that many of the
interesting problems about Riemann surfaces are now
of a combinatonal nature.

2. Solitons and iso-spectral deformations

The theory of Riemann surfaces was of some interest to
theoretical physicists of the previous century when it
was used as a ‘toy’ model on which electromagnetic
field theory was studied. This was later followed up by
Klein who used the physics as a justification for the
application of the Dirichlet principle (the proof then in
existence had some gaps). More recently, the theory has
been applied in a different way to various problems in
physics and engineering. The particular class of
problems considered here can be classified as problems
of iso~spectral deformation.

Given an operator P (say a hnear operator on a
function space) we can ask for all deformations
P(x,,...,x,) of this operator that preserve the eigen-
values along with their multiplicities, 1.e. deformations
that preserve the spectrum. Such a deformation is called
an iso-spectral deformation. One way to formalize this
notion is as {ollows. We consider the largest commuta-
tive algebra .« of operators that contains P. It is well
known that the spectrum of P determines the structur®
of .« and vice-versa. Then for each P(x,,...,x,) we
have an algebra « (x,,...,X,) The problem is to choose
deformations such that . =~ (x,,...,%,) for all
(Xy,...,%,). It was shown by Lax that we need only
consider the special case in which the deformation is
contained in the adjoint orbit, ie. there should be
operators B, such that

o

——=(B,,P]

axk [ k ]
where [,] denotes the commutator of two operators and
the differentiation is being performed on the coelficients
of the operator P(x,,...,x,). Moreover, we have the
natural condition for integrability

cB, 7B,

ox, E}:: [B,, B.].

This way of stating the isospectral problem 1s called the
Zakharov-Shabat formulation.
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2.1 Lax operators

The situation where P 1s a2 monic ordinary differential
operator will lead us to Riemann surfaces. We first
enlarge the scope of the problem by allowing pseudo-
differential operators.

Let ¢ be the space of ‘functions’ on which our
operators operate. Let ¢ denote the given differentia-

tion on ¢ 50 that any ordinary differential operator is
of the form

O=a,"+a,_, 0" '+ ... +a,,

where the g, are ‘functions’ {elements of ¢). A pseudo-
differential operator is a formal expression of the above

type where we allow infinitely many terms with negative
powers of é.

Sz'ﬂﬁa+ "‘+Hu+aﬁlaﬁl+“.

The Leibniz rule is extended in a natural way by
defining

0 la=ad ™ '—3(a)é~*+8(d(a)e™3— -.-.

This gives us the algebra of all pseudo-differential
operators. One of the advantages of working in this
algebra is that any monic operator (see below) can be
inverted. Though these operators are purely formal, the
final results we obtain will actually give convergent
solutions.

Let P be a monic ordinary differential operator, ie.
P=d"+a,_,0" 14+ ... +q,.

Let us assume that g=exp (a,-,/n) 15 an element of 2,
1.e. we assume that the equation (6 +a,_/mMg=0 has a

solution in & . Then replacing P by g7 Pg we have the
simplified operator

P=0"+0¢8"" Y +a, ,0"" %+ ..« +a,.
We can now find a psewdo-dafferential operator
L=08+0+u,0 '+ -

such that L"=P. This requires us to solve a succession
of linear equations for u, which can be solved
inductively. One can easily see that the deformation

theory for P yiclds the following evolution equations
for L,

oL

axk [ k‘!L]
Thus the study of P can be replaced by the study of
operators like L. These are called Lax operators.

Example. An example of some interest to theoretical

physicists as a ‘toy” model is the Schrédinger operator
P= 62 + o
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2.2 Conwvnutative algebras of operators

In order to study the spectrum of our monic ordinary
differential operator P we can study the maxtmal
commutative algebra o of ordinary diflerential operators
such that P lies in it

Let k be the collection of all ‘constant functions’, 1.e.
those a in ¢ such that ¢é(a)=0. Let f(T) be a Laurent
pPOWeEr Series

f(T)=+I,,T_"+{In_1 T "H14 ... +og+o_ T4 ..

where «, are ‘constants’. We can show that the
collection of all pseudo-differential operators that
commute with L is the algebra of all operators of the
form f(L~1). In other words this algebra is isomorphic
to the algebra k{(T)) of formal Laurent series in the
variable 7. Any such operator has two parts
UL YHY=f(L™YH, +f(L™Y)_ consisting of the ordinary
differential and the pseudo-differential operator parts.
The commuting algebra .« is then the collection of
operators f(L™Y)=f(L™1), .

In particular, one can see that w yields a subalgebra
A of k((T)) with the following properties:

1. There are no elements of 4 that have the form
f(MN)=a;T+o, T*+ ---.
2. There is some power of T'~! which lies in A.

As a first step we can try to compute all subalgebras A4
of k{(T)) with this property. We will show next how
these algebras lead us to Riemann surfaces. After that
we will return to the iso-spectral problem and show

how it can be solved using the geometry of Riemann
surfaces.

3. Riemann surfaces and algebraic curves

One way of obtaining Laurent series is to study
holomorphic functions on the complex plane minus the
origin. The classical study of such a function begins
with the study of 1ts domain of definition. This yelds a
Riemann surface. In some cases this Riemann surface
can naturally be thought of as a projective algebraic
curve. We will identify all algebras 4 as in section 2
with the algebras of certain functions on such curves.

3.1 ° Functions of one complex variable

Let £D—C be a complex valued function on the unit disk
D={z:|z] <1} instde the compicx plane. If the function
is holomorphic, i.e. if it satisfies the Cauchy-Riemann
condition at every point of D, then we have a series
eXPression:

f(z) = Z a z".

n=1
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Conversely, given such a series there 1s a well known
condition — the Weierstrass M-test—that will ensure
that f is a well-determined holomorphic function in the
unit disk. Hence from here onwards we do not
distinguish between holomorphic functions on a disk
and the corresponding convergent series. Of course, the
series stops converging at some point (possibly infinity!)
but Riemann imvented the beautiful notion of analytic
continuation which circumvented this. (The 1dea behind
analytic continuation was vastly generalized by Leray
in the fifties by introducing the concept of sheaves. This
was developed in the fifties by Kodaira, Serre and
Leray. The new foundations of Grothendieck were
based on this important notion.) ’

It may happen that there is another disk D’ in the
complex plane which meets D, eg. D'={z:|z—1|<a},
and a holomorphic function ¢:D’'—=C such that
f(z)=g(z) for all z in DND’. Since any holomorphic
function on D is determined by its value on an open set
hke DnD’, we may consider the function f as being
continued (to be defined) to D’ using ¢°. This raiscs the
natural question of the largest region or domuin of
definition of the function f.

Example. Let us take the function on the unit disk
f(2)=(1+2)Y?/(1—2). We may choose any disk D’
which does not contain {1, —1} and show that therc is
a way of continuing this function. But let us take the
sequence of disks arranged around the point — 1 in the
complex plane:

Do={z:|z| < 1}
Dy={z:]z—(1+i)[ <1}
D,={z:|z—-2|<1}
Dy={z:lz—-(1-1i)|<1}

D,={z:|z]< 1} again!

We let fo=f and let f; be the function on D, obtained by
continuing the function f,_, defined inductively on
D;_,. We find that f,(2)= -~ (1 + )21 -2).

As the above example shows, we must keep track of
the function g obtaincd by continuation in our
definition of the domam. This domain is obtamed by
putting together all pairs (g, D) consisting of a disk D'
in the complex plane and & holomorphic function ¢ on
it, such that this pair is linked to the onginagl par (£, D)
as follows, There 15 a sequence of disks D, DL D,
which are ntethinked, e, D, meets D, ., and functions
f,oon D, which agree on the overlaps, morcover, we
begin with Dy=D and f,=f and end with D, - D" and

o= g. Of course we may subsume (i, D) withw (A, DY) af

D' s contiined e DY and & restrivts to ¢ on D' What
we obtain is cilled the Rieonmn surface dxsovtated with
the function f.
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We see that the same disk may appear in our
collections many times. This is usually expressed by
saying that the Riemann surface of f consists of many
sheets lying over the complex plane (which can be
thought of as the Riemann surface of the identity
function z). Each of the components (g, D) is referred to
as a branch of the Riemann, surface.

‘In the above example, the function is well determined
in a small enocugh disk around any point other than 1
and — L. In the general case also, there may be many
points of the plane over which some branch of the
function cannot be extended. Such points are referred
to as singuiariries of the function. We now study the
function in a neighbourhood of a singularity.

We assume that the singularity is isolated, 1.e. we
have a function f which can be continued over every
point of the punctured unt disk

D*={z:0<|z|<1}.

From the usual theory of analytic functions we know
that such functions {all into three classes as follows.

1. The function f has an expression of the form

"
f@= 3 af
i=—N
1.e. a Laurent series expansion exists. In this case we say
the function has a pole of order N at the origin and
define its ‘value’ to be oo. This makes sense since 1/f is
actually analytic on the entire disk and takes the value
0 at the ongn.

2. The function is multivalned on the disk and has the
form

f@= 3. au,

where z=exp (u(z)). In other words, we have a function
of log (2). This is the case of a logarithmic singularity.

3. One of the special cases of the above case 1s when £ is
actually a function of w=exp (v(2)/n) for some integer
n. In this case f is n-valued over the disk’ and is a
function of w=1z!'" We then say the funciion (of more
correctly the corresponding Riemann surface) is rami-
fied of order n over the origin.

4. The function has an essential singularity at the
origin.

We restrict our attention to the ‘finite’ cases (1} and (3)
above. If all singularities of all branches of our function
are of these two types then Riemann showed that we
can ‘adjoin’ some more points to the domain of
definition and obtain a compact Riemann surface,

One way of constructing such functions f is as
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follows. We take a polynomial function
P(z,T)=ay(2)T"+a, () T" " + - +a,(2),

where a,(z) are polynomial functions of z. Let f be a
function which satisfies this polynomial equation, ie.
P(z,f(z)) 1s zero for all z in D; we call such an f an
algebraic function of z. The function in the above
example is one such. The crucial point is any function f
which has no logarithmic or essential singularities at
any branch over the Riemann sphere is of this type (and
the Riemann surface is then compact).

Example. The function considered in the previous
example yields the equation

Pz, T)=(1-2)*y*—(1 +2)

which is clearly such that P(z,f(z))=0.

Conversely, consider the associated plane curve
consisting of pairs (x, y) such that P(x,y) is zero. Since
we have been looking at complex valued functions of a
complex variable we may look for solutions where x
and y are complex numbers (in fact since we also allow
oo as a value we can look for solutions in the complex
projective plane!). Now we can see that outside a finite
set of choices x=a in C , the choice of one root y for
P (a, T) as a polynomial in T yields a choice of root y(2)
for each z in a disk {z:|z—a|<b} around a. Moreover
this function y{2) 1s a holomorphic funciion of z, which
is a branch of the function f which was chosen in the
previous paragraph.

Example. In the example considered above, the
Riemann surface is associated with the plane algebraic:
curve defined as the locus of points (X:Y:Z) of the
complex projective plane where the homogeneous
polynomial

PX, Y, Z)=(Z—-XP Y~ (Z+X)2Z?

vanishes. There is a point ¢=(0, 1,1) 1n this locus where
the partial derivatives of P do not all vanish. In other
words o 1S a smooth point of the curve.

Thus we have built a ‘picture’ for our Riemann
surface. Outside a finite set of points it s the set of
(complex) points of a plane algebraic curve; moreover,
the coordinate function z is obtained by projection to

the x-axis and the function f, by projection to the y-
axis.

3.2 Projective algebraic curves

We saw that to every compact Ricmann surface there is
associated a plane algebraic curve. In fact one may
show that a compact Riemann surface can be embedded
in complex projective n-space P". Thus the study of
compact Riemann surfaces 35 also the study of smooth
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complex projective curves (all such are in fact algebraic
curves, .. defined by polynomial equations).

The field of meromorphic functions on an algebraic
curve is a function field of transcendence degree one
over C ; 1e. the field is generated over C by two
clements that satisfy exactly one polynomial relation.
For example, if we have a plane algebraic curve defined
as the zero locus of a polynomial equation P(X, Y)=0,
then the field of meromorphic functions on the curve is
generated by two elements x and y which are subject to
the relation P(x, y})=0.

Let o be any point of our plane algebraic curve. We
choose a local parametrization (x(7T'), y(7T)) near this
point. Using this parametrization any meromorphic
function on the curve can be written as a Laurent series
in 7. The meromorphic functions that have poles only
at o give us a subalgebra 4 of the algebra X((7T)) of all
Laurent series. Any elements of 4 that do not even
have a pole at o, 1.e. which have no potles at all, must be
constants by Louiville’s theorem. In particular, there
are no elements of A that have only positive powers of
7. Thus we have an algebra as required in section 2,

Example: For the curve given by (z—x)*yi—
(z+x)z>=0 we write the parametrization x{7T)=1T,
y(D=(1+T}?(1~T) and z=1 is a neighbourhood
of the point 0=(0,1,1). One shows that the algebra A
is finitely generated.

Any subalgebra 4 of k((7)} which has no elements
with only positive powers of T, and which contains
some power of 7" 7! (as in section 2) satisfies

1. There is a positive integer r (called the rank) such
that for any sufficiently large integer n, there 1s an
element of A of the form

f(T)= T -m+a-—nr+1 f B SR "
2. The algebra A is fimtely gencrated.

As a consequence it follows that there is a projective
algebraic curve X and a point o on it such that X is
smooth near o and A the algebra of all meromorphic
functions on X which have poles only at o.

4. Solution of the iso-spectral problem

We now examine the combined results of the previous
two sections. For a moni¢ ordinary differential operator
F we introduced the maximal commutative aipgebra.w
containing it. Later we showed that such an algebra is
isomorphic to a subalgebra A of the algebra of the
Laurent power series of a certain kind. We then showed
how such an algebra corresponds to a projective
alpebraic curve X and smooth point ¢ on it. In terms of
spectral theory these results mean that each point of X
except o corresponds to some simultaneous eigenfunc-
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tion for all eclements of . The corresponding
eigenvalue being just the wvalue of this element
considered as a function on X.

To cach point p of X we associate also the space E,
of simultaneous eigenfunctions corresponding to it. In
cas¢ E, is a vector space whose rank is independent of
the point p we get a vector bundle over the Riemann
surface, at least outside 0. We may extend this bundie
in many ways to a bundle over all of X. These many
ways are what give rise to the deformations of the
operator P.

In section 4.2 we will see how these deformations can
be constructed using the geometry of projective
algebraic curves. For simplicity we assume that we are
in the case where X has no smngulanties. We also
assume that the rank of the eigenspaces above is 1.

4.1 Some more geometry of projective curves

Given any non-zero function f on a curve we can
associate to it its zeroes and poles; these form a finite set
of points ou the curve. To any zero of f we can
associate its order (of zero) which i1s computed by
making a local expansion of the function in terms of a
local coordinate as in section 1. Similarly, the poles of f
are the zeroes of 1/f and so also have an associated
order (of pole). We adopt the convention that a pole of
order # of fis a zero of order —n. The divisor of f is
then the collection of pairs (p,a,), where p 1s a point of
the curve and a, is the order of zero of fat p. We refer
to any such collection D= {(p,a,}}, where a, are integers
only finitely many of which are non-zero as a divisor. The
sum of all the integers a, (this is a finite sum) is called
the degree of the divisor. If the divisor is associated with
a function it is of degree 0.

We note that if f and g are functions on the curve
and have associated divisors {(p,a,)} and {(p,b,)}, then
fg has the divisor {(p.a,+b,)}. As we saw above the
divisor associated with 1)f is {{p, —a,)}. The formula
{(p,a )} +{p.b)} ={(p.a,+ b,}} delines the structure of
an additive group on the set of divisors. Hence we refer
to it as the group of divisors on our curve. Moreover we
have just secn that there is a natural group homemor-
phism from the mudiiplicative group of non-zero
functions on our curve to its group of divisors. The
divisor class group is the quoticnt of the group of
divisors by the image of this homomorphisny.

Just as we can talk about meromorphic functions on
the curve we cun tulk about meromaorphic differentials.
These are of the form fdy, where f and ¢ are
meromorphic functions, 1 we express ¢ in local
coordinates at p as g(2)=X % u, ' thea dg vanishes at
p il and only if

dy

- [p:ulmﬂ_

dz
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The poles of order n of g will give rise to poles of order
n+1 of dg. Thus we have a divisor K associated with
dg. Naw for any other {unction g’ on the curve (dg'/dy}
1s a function and so we see that the image of K in the
divisor class group of the curve is well-determined. This
divisor class is also denoted by K and is called the
canonical divisor (class) of the curve. The degree of the
divisor X is ag important invariant of the curve. It is
even and the number y={(deg (K)/2+1) is called the
genus of the curve.

Given any divisor D={{p, a,)} we say D is effective, if
a, > 0 for all p. Now for any divisor D we can look for
all functions f such that D+ div (f) is effective. The set
of such functions 1s a vector space (D) of finite
dimension. Up to scalar multiples this 15 also the
collection of all effective divisors which have the same
image as D in the divisor class group.

The Riemann inequality gives a lower bound on the
dimension of ((D),

dim {(D) = deg (D}+1—7,

where 7 is the genus of the curve. This inequality

obtained by Riemann was improved by Roch to get the
Riemann-Roch identity.

dim [(D)—dim (K —D)=deg (D) +1—y.

The latter 1s a very useful tool in the study of the
projective geometry of the Riemann surface. An easy
exercise 1s to use 1t to show that if deg (D)>deg(K),
then the Riemann inequality becomes an equality.

The final object we wish to consider is the Jacobian
of the curve. Classically, this is a torus constructed by
computing the periods of integrals on the Riemann
surface. Let w,...,w, be a basis of [{K) which we are
identifying with the space of differential forms with no
poles on X. For any closed loop C on X we can
compute the vector of integrals

The collection of all such vectors gives us a complete
lattice A in the complex lingar space C7.

The Jacobian torus is in a natural way identified with
the quotient J(X)=C YA, Riemann (and later §.
Lefschetz) showed that J{X) can also be embedded in
complex projective n-space for some n. For any pair of
points p and g on X, we can choose a path P joining
these two. The vector of integrals (studied by Abel and
called Abelian integrals)

([ove )

depends on P. If we choose another path P’ joining the
same two points then we have a closed C loop on X
obtained by following P in the forward direction and
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then P’ in the reverse direction. We then have an
equation

(o o) ([ f o)
(orfo)

Hence, we have a well-defined point of C /A associated
with any ordered pair of points p and ¢ on X. This
procedure can be extended to associate a point n(D) for
cach divisor D of degree 0 on X.

The map n 1s additive, 1.e. (D+ D)= (D)+n (D). It
was studied by Abel, Jacobi and later more extensively
by Riemann and is called the Abel-Jacobi map. The
divisors of functions are in its kernel. The problem
considered by Abel and solved by Jacobt and Riemann
is to show that any divisor in the kernel 1s indeed the
divisor of a function, i.¢. #(D)=0 if and only if there 1s a
function f on X such that its divisor is D.

Thus we see that a detailed geometric study of » can
tell us exactly what kinds of functions exist on the
Riemann surface. This approach was investigated first
by Riemann who formulated the Riemann singularity
theorem. A detailed proof of this theorem was only
obtained quite recently by Kempf.

As a result of the Riemann inequality, for a divisor D
of degree < (p— 1} the space {(D) has dimension 2> 0.
For a general divisor one may show that this dimension
is actually zero. Following some (conjectural) work of
Brill and M. Noether analysing the Abel-Jacobi map,
Griffiths and Harns were able to obtain far more
precise results saying when I(D) has dimension bigger
than 1 for deg (D) < (p—1). Numerous other problems
of a geometric nature were also made accessible by
their techniques.

An important technmique called degeneration is used
by Griffiths arnd Harris and has recently been developed
further by Eisenbud and Harris. Loosely speaking this
is a ‘bend and break’ technique. By the study of
properties of singular (‘broken’) curves one can recover
information about smooth ones. The analogues of the
spaces [{D) for singular curves are called iimi} linear
series. The latter technique is so powerful that Eisenbud
and Harris were able to give proofs of almost all
outstanding geometric problems about curves by this
method (including the mysterious appearance of the
number 26 as the dimension of space-time).

4.2 Deformations

—— el gl

For any divisor D on X which has degree O we consider
the space

ED)y= () I(D+no)

n>0
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By the Riemann inequality the Jatter spaces keep on
growing n dimension and eventually, for n>»0 the
space (D + no) has dimension n. We can also vary D by
adding divisors D' of the following form. For some
pomt p of X we can consider the divisor which has
a,=—1and a,=1, g, =0 for all points X other than
o and p. By doing this many times we have an infinite
parameter variation of the data.

The space E(D) can be identified with a subspace of
k((T)). This lies in the class of subspaces V' with the
property that for all m sufficiently large there are

exactly m linearly independent Laurent series in ¥ of
the form

fT)=a T+ a gy T4 e

The collections of all such spaces forms the infinite
Grassmannian. Replacing D by D+ D" gives another
such subspace. As D" approaches the trivial divisor this
oives an infinitesimal action. This infinitesimal action is
the iso-spectral flow. We note here that 1n the case of
rank 1 the integral manifold of this flow is the Jacobian
of the curve X.

The infinite Grassmannian and the assoclated group
action is a purely combinatorial construction, involving
the symmetric functions and associated polynomials.
Since all pointed Riemann surfaces occur on the infinite
Grassmannian we can now attempt toe study the

collections of all curves in a purely combinatornal
fashion.

5. Further reading and references

A much more complete historical sketch of the theory
of Riemann surfaces (and algebraic geometry in general)
may be found in the book: Shafarevich, 1. R., Basic
Algebraic Geometry, Springer—-Vertag, Berlin, 1977. This
book also contains more details about sections 3.2 and
4.1.

For the formalism of Lax operators (section 2.1)
and their use in solving the 1so-spectral problem
(section 2.2) we have followed the exposition of:
Motohico Mulase, J. Diff. Geom., 1984, 19, 403-430.
Much of the formalism comes from the original papers
of Burchnall and Chaundy.

The defimtion of Riemann surfaces arising out of one
variable function theory (section 3.1) can be studied
from chapter 8 of the book: Lars Ahlfors, Complex
Analysis, McGraw-Hill Kogakusha, International stu-
dent edition, 2nd edition, 1966.

The geometry of projective curves is a well-developed
subject and the book (Arabarello, E, Cornalba, M.,
Grifiiths, P. A. and Harris, )., Grundlehr. Math. Wiss.,
1985, 267) covers all the unproved assertions of section
4.1 and much more. Section 4.2 is adapted from a
Hilbert space approach of Segal and Wilson: Wilson,
G., in Geometry Today, Proceedings of Giornata di
Geometnia, Rome 1984, Birkhiuser, Boston, 1984,
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1. Diophantine equations

In number theory, one of the problems of basic interest
is to find all integer solutions of an cquation

J(Xy,..., X)=0,

where [ 1s a polynomial with integer coclficients; such
problems are known as Diophantine problems. Tt 1s also
of interest to study systems of such equations, and to
consider alpebraic integer solutions  {for  example,
solutions with X=X a,,{’, where { is a primitive nth
root of unity, and the 4,, are integers)

As a first step, one may imstead Jook for ntegers X,
such that f(X,,....X,) is divisible by « giren prime
nundher p, Since O is divisible by p, this is certainly an
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‘easier’ problem to solve, In the sense that if it has no
solution, neither does the original Diophantine problem,
Equivalently, onc considers ¥, the integers modulo
p; onc description of these s as follows—-17, = (0.1,
o p=13}, where we define the sum of two such
numbers to be the remainder obtained on dividing their
sum (as integers) by p, Their product is simidarly delined
as the renmnder obtained on dividing the integer
product by p. These modificd operations produce a

field, ie. an alpebraie system in which one can perform

the usual operations of addition, muluplication and
division by nen-zero elements, and these operatons
have the standard properties. This s an example of g
finite ficld. There s a mapping Z-+17, (called ‘reduction
madulo  p') which  associates  to each Intewer  the
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