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1. What is a singularity?

Smgularity of what? Say, of a curve or a surface. So,
what 1s a curve? A curve is a wiggling line which may
cross on itself and may also have some sharp corners or
beak-like features. Such special points, where the curve
crosses itself, see Figure 1, or has a beak, see Figure 2,
15 a singularity. The first type of singularity is called a
node and the second type is calied a cusp.

Figure 1. Figure 2.

Algebraically speaking, a curve can be given by an
equation. For example a straight line through the origin
has the equation y=mx, where m 1s the slope, and a
circle of radius r with centre at the origin is given by
the equation x?+ y?=r% A curve having a node, as in
Figure 1, could be described by the equation
y*—=x*—~x*=0. The one with the cusp, as in Figure 2,
may be described by an equation such as y>?—x*=0.

Just as a curve is an object in the plane and can be
described by an equation f(x,y)=0 in two varables, a
surface is an object in space and can be described by an
equation g{x,y,z)=0 in three vanables. For examplec
xt4 yf422=1 and (x¥/a®)+(y?/bH)+(z%/c*)=1 are
equations of a sphere and ellipsoid  respectively

Figure 3.
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(Figures 3 and 4). These surfaces have no singularity,
because all points on them are ‘like each other’.

The simplest surface with a singularity is the cone
(Figure 5); its equation is x2—y?*—2z%2=0 and it has a
singularity at the origin.

Figure S,

2. What 1s resolution?

Resolving a singularity means making a transformation
which will remove it. For example, let us make the
quadratic transformation x = x"' and y=x"y". Looking at
the nodal cubic of Figure 6, we get y2—x2—x3=
x' 2yt —x'?— xS = x" (302 ~ 1 ~ x'). Discarding the eatran-
cous factor x? we get the equation 32— 1—x'=0 which
ts a parabola intersecting the y" axis in two points (Figure 7)

bipure 6, bipure 2,
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which s nonsingular, t. e. has no singulanties. Thus the
quadratic transformation (QDT) has resolved the
singularity of the nodal cubic.

Likewise, for the cuspidal cubic (Figure 8) we pget
yiex¥= a2y — 3= (' — x'). Again, discarding the
factor x'? we get y"?—-x"=0 (Figure 9) which is a
parabola tangent to the y axis. So the QDT has
resolved the singulanty of the cuspidal cubic also.

/

> X

Figure 8. Figure 9.

Let us now consider the quintic (curve of degree five),
y*—x?>=0 having a ‘higher’ cusp at the origin, see
Figure 10. Making the QDT we get y?—x5=
x'2y' 2~ x"=x"*(y'2—x'3) and discarding the factor x’2
we get the cuspidal cubic y'? —x"*=0 (Figure 11). Thus
the QDT did not resolve the higher cusp, but only
transformed it into an ordinary cusp. One more QDT,
x'=x"and y'=x"y", will of course resolve the ordinary
cusp (Figure 12). Thus it takes two QDTs to get rid of
the singularity of the cuspidal quintic. It was proved by
Noecther' around 1873 that the singularities of any
algebraic plane curve f(x, y)=0, where fis a polynomial
of any degree can be resolved by a finite succession of
QDTs. For a proof of this, and for an explanation why

the factor x' may be disregarded, see Lecture 18 of my
1990 book?2.

[ i - — —~ — = -

Figure 10. Figure 11, Figure 12,

Actually, the theorem of resolution of singularities of
plane curves goes back to Riemann® who, around 1865,
proved it by constructing the ‘Riemann surface’ of y as
a function of x. Riemann's construction was highly
analytic (that is based on complex analysis) and
topological. Indeed, much of topology was invented by
Riemann for this construction. Noether, who geo-
metrized the resolution theorem of plane curves and
who 1s sometimes called the father of algebraic
geometry, was a disciple of Clebsch who himself was a
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follower of Ricmann (see Klein's History of Mathemutics*
which is in German). Riemann himsell was an carly
student of Gauss, It was Gauss’' last pupil, Dedekind.
who algebracized the resolution theorem for plane
curves in his 1882 article in the Crelle Journal which he
co-authored with Weber?®.

To deal with surface stngularities, we can use QDTs
of space such as x=x', y=xy’, z=x"z". For example. by
applving the above QDT to the cone, described in
Figure 5, we get x2—y?—z22=x"2—x'¥y'2 202
x"?(1 - y'*—2z'?) and discarding the factor x'? we obtain
the equation 1 — y'? —2’#=0 which represents a cvlinder
arou,nd the x'-axis. Clearly the cylinder has no
siaularities. Thus one QDT resolves the singularity of
the cone. In general, in addition to QDTs, of space, we
also require variations of them called MDTs of space,
where we leave some of the vanables alone, ie.
transformations such as x=x",y=x"y,z=z". It was
proved by Zariski® in 1943 that the singularities of any
surface can be resolved by a finite succession of QDTs
and MDTs.

Now QDTs, as applied to a surface (or curve),
transform it to another surface (or curve), in an almost
one-to-one manner. The same is true for MDTs applied
to a surface. Quite generally, an almost one-to-one
transformation s called a birational transformation.
Algebraically speaking, a transformation is birational if
its equations as well as the equations of its inverse are
expressible in terms of rational functions, i.e. in terms of
quotients of polynomial functions.

A correct proof of the thcorem of resolution of
singularities of surfaces, allowing general birational
transformations, was first proved by Walker” in 1933,
In turn Walker’s proof was based on Jung's® 1908
paper on local uniformization, which is the local
version of resolution of singularities.

3. Why resolution?

Now if a curve or a surface is nonsingular, 1. e, if it has
no singulanties, then near every point it looks like the x-
axis or the (x, y)plane, and so, on the said curve or
surface, we can carry out the operations of calculus
such as differentiation and integration. This is one
reason why we want to resolve singularities. Another
reason is that the successive steps required to resolve a
stngularity do provide a lot of information about it, and
putting together the resulting information for all the
singularities tells us about various properties of the
curve or the surface. An illustration of this can be found
in Lecture 19 of my 1990 book?, where it is shown how
to calculate the ‘genus’ of a plane curve in terms of an
analysis of its singularities, and in case the genus turns

out to be zero, how to parametrize the curve by
rational functions.
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4. What 1s characteristic?

The above discussion of resolving singularities of curves
and surfaces was originally restricted to characteristic 0,
and its vahdity was extended to characteristic p by
Hasse® and Schmidt!® for curves around 1934, and by
Abhyankar'! for surfaces in his 1956 PhD tliesis. So
what is the diflerence between characteristic U avu chaiac-
teristic p? The difference lies in the coeflicients oi the
equation f(x,y)=0 or the equation g(x,y,z}=0. If the
coeflicients are rational numbers, or real numbers or
complex numbers then we are certainly in characteristic ¢,
because these ‘fields’, 1+1+1-.-never equals 0 no
matter how many times we add; these three number
systems are fields because in them we can add, subtract,
multiply and divide. On the other hand, for a prime
number p, a field 1s of characteristic p if In it
!+ 14 ... +1{p times)=0,

For example, the residue class ring Z/pZ 1s a field of
characteristic p. To explain this, let us recall that, briefly
speaking, a ring is a set in which we ean add, subtract
and multiply; thus the set Z of all integers is a ring. A
field 1s a ring in which we can divide by nonzero
clements; thus rational numbers, real numbers and
complex numbers are fields. The residue class ring Z./pZ
consists of boxes where in one box we put all integers
which when divided by p leave the same remainder. The
sum A+ B of two boxes A and B 1s the box containing
a+b with a in 4 and b in B; note that A+ B depends
only on A and B and not on the elements g and b. The
product of two boxes is defined in a similar manner.
This makes Z/pZ into a ring in which we can divide by
nonzero elements, and so i1t is actually a field whose
characteristic is obviously p.

5. Mixed characteristic or arithmetic case

Usually we write integers in their decimal expansion,
i.e. as the sum of powers of ten with coefficients (called
digits} ranging from zero to nine. For example,
423=(4 x 10%)+ (2 x 10) + 3.

Instead of ten we could usc any integer n > 1, and
then we get n-adic cxpansion. This 1s cspecially
significant when n is a prime number p. At any rate, the
p-adic expansion of an integer is very similar (o a
polynomial in x; in this analogy, the prime number p
plays the role of the variable x and the digits, which vary
between zero and p— 1, play the role of the coeflicients.
But because of carry-over, addition of p-adic expansions is
not as straightforward as addition of polynomials.
Likewise for multiphcation,

Extending this further, consider a polynomial m a
variable x, say ¢ (x)=dy+a,x+ -+ +a ", with integer
cocflicients dy, d,, ...,4,. Replacing each coefficient a, by
its p-adic expansion, @ {x) lovks bke a polynomital 1in x
and p.
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Similarly, a polynomial f(x, y) in two variablcs x and
y with integer coefficients may be construed to be a
polynomial in three variables x,y,p with coefficients
ranging between zero and p— 1. Here p ranges over all
prime numbers. In this manner, the original algebraic
curve f(x, y}=0 becomes an arithmetic surface S. As we
recduce the coefficients of f{x,y) modulo p we get a
wirve ¢, over the finite field Z/pZ of characteristic p.
Thus by imagining a fictitious variable z, we may say
that the plane z=p intersects the surface § in C,. Thus
S may be viewed as a ‘family’ of curves ‘parametrized’
by various primes. Since, for every prime number p, the
surface § has points with coordinates in a field of
characteristic p, the arithmetic case may be called the
mixed characteristic case.

In a natural manner, these ideas lead to the problem
of resolution of singularities of arithmetic surfaces. This
problem was solved by Abhyankar!? in 1965. Now in
social life, uplift of a family is more than the well-being
of all the individual members. Similarly, the resolution
of singularitiecs of an anthmetical surface, which 1s
regarded as a family of curves of different character-
istics, 1s something more than the simultaneous
resolution of singularities of all the individual curves. In
modern technical language, this amounts to resolving
the singularities of a two-dimensional ‘excelient schemne’;
se¢ Abhyankars'® 1968 lecture at the Tata lastitute
Colloquium,

Now just as a curve f{x, y}=0 over Z can be thought
of as an arithmetic surface, a surface g{(x, y,z)=0 over Z
can be thought of as an arithmetic solid.

To resolve the singularities of an arithmetic solid 15 a
nice challenge to an ambitious young student looking
for a PhD thesis topic. The solution of this problem
will not only be of obvious significance to algebraic
geometry, but it will also be of considerable interest to
number theory because 1t will amount to resolving the
singularities of a family T of algebraic surfaces §,, of
characteristic p, paramctrized by a varying prnime
number p.

6. Higher dimcension

Having referred 10 an anthmetic solid, what i1s a usual
(=algebraic = gecometric) solid? Just as a surface in 3-
space is given by an cyuation g(x,».z)=0 in three
viartables, so a solid, or a three-dimensional alyebraic
variety, an d-space 18 given by an equation Ay, y,zow)=0
in four variables. Resolution of singularities of three-
dimensional algebraie varicties, for charactenstic sero,
was achieved by Zuarnski™ 1in 1944, and for charactenstic
p, Abhyankar'? extended Zariski's proof in 19066,

More gencrally, for any posttive inteper n, an n-
dimensional  algebraic variety m (0 ¢ dimenstonal
space 15 given by an cquation ${v, x4 411 =0 0
n+ 1 vanables. For > 3, resolution of singularities of
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n-dimensional  afgebrarc  varictics over a  field of
characteristic 0 was achieved by Hironaka!” in 1964, For
ficlds of characteristic p. this 18 a challenging open
problem {D)Sc thesis). Necdtess to say that, for
arithmetica! vangties of dimensiog > 1, it 18 even more
of a challenge (F R S thesis).

7. Algebraic geometry

The wvarious cases of resolution ©f singularities do
accupy a central plice in algebraic geometry. So what
is algebraic geometry? Originally, algebraic geo-
metey was simply a syathesis of the two subjects
of analytic geometry and theory of equations. Analytic
pcometry 15 the study of geometric figures by
algebraic equations, and was iitiated by Descartes
around 1635, Theory of equations, or high-school
algebra, deals with simphfying expressions, factoring
polynomials, making substitutions, and solving equations.
This type of algebra started in India where it reached
its climax in the hands of Bhaskaracharya in 1139,
After that, via Arabia it went to Europe and got its
biggest boost in the hands of Newton atound 1660
Without getting deeper into this history, let me simply
say that, in the last fifty years or so, algebraic geometry
seems to have taken off into rarefied abstractions,
leaving behind its concrete manipulative origins.

But personal experience has convinced me that
reverting to the classical high-school algebraic origing
of algebraic geometry is very desirable for tackling
problems hke the problem of resolution of singularities.

8. Scientists and engineets

So I am very happy 1o see that, during the last dozen
years or so, a return to such concrete origins ol
algebraic geometry has beenm inspired because of the
interest  taken by scientists and engineers. This
motivated me 1o give a serigs of lectures to an
engineering audience and compile them into a book on

by
‘—

Alyebruic  Geometry  for  Scientists and  Engineers®.
Needless to say that for further information concerning
the matter dealt with in this paper, reading of this book
would be quite profttable.

[n the said book, in addition to discussing the
method of concrete or high-school algebra, | also relate
it to the language of abstract or college algebra,
because it too can be quite useful. An illustration of
collecge algebra 1s Dedekind's proof of resolution of
singularities of plane curves referred to in the second
section. What Dedekind does is 1o take the ring R of
polynomial functions on the curve and then pass to its
integral closure S in the field of rational functions on
the curve. Now the curve whose ring of polynomial
functions is § 15 automatically nonsingular and so we
are done!

Having talked about high-school algebra and college
algebra, let me close by saying that the third level of
algebra, i.¢. the super-abstract or unjversity algebra, is
also sometimes useful. The notion of excellent schemes
cited in the fourth section 1§ a sampie from university
algebra.
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