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Gravitation

Hermann Bondi

Newton's theory of gravitation is presented in modern form. It is shown how, combining it with
special relativity, one is led to Einstein’s theory of gravitation (‘general rélativity’). Its consequences
for orbits, black holes, gravitational energy and gravitational waves are briefly described.

Galileo’s principle

Modern science may be said to have begun with
gravitation, yet this subject is still an imperfectly
understood fairly separate branch of physics. This
article tries to take the reader through a series of
considerations illuminating different aspects of it.

The essential starting point, which brings out the
peculiarity of gravitation, 1s Gahleo’s statement that all
bodies fall equally fast. This is still the e¢ssence of the
subject. At first sight one might think that Galileo’s
principle, as I like to call it, would simplify matters, but
the opposite 15 the case, since we cannot compare a
body on which gravity acts with one that is immune to
such a force, there being no ‘immune’ matenals. In a
sense Galileo’s principle was already implicit to the
acceptability of the Copernican scheme because, if
different substances on the Earth reacted differently to
the Sun’s gravitational pull, we would see a sorting of
matter which is not in fact observed.

Galileo inferred his principle from experiments which
were as good as the technology of his_day, more than
3% centuries ago, allowed. The principle has been
tested since with more modern means. Early in this
century Eotvos in Hungary carried out a most
ingenious experiment which showed that deviations from
Galileo’s principle could not exceed one part in 107,
and in the seventies R. H. Dicke at Princeton reduced
this to one part in 10’1 Thus we know that the
principle is satisfied to more prectsion than we can
claim for most other physical principles. Yet nagging
doubts remain. Gravitation is a remarkably weak force,
weak compared with others that we know. A typical
case of another force is the electrostatic attraction
between charged bodies, the force on which all atomic
structure depends. In the simplest case, the hydrogen
atom, there is one (positively charged) proton and one
negatively charged electron. The clectrostatic attraction
between them can be eflectively measurcd, while the
tiny gravitational attraction can only be inferred. The
ratio between the two forces (which is independent of
distance) is a few times 10°7, a truly enormous numbes!
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Thus the second characteristic of gravitation is its
extreme weakness, a weakness so great that one 1is
surprised that gravitation is at all measurable. In fact it
is an immediately noticeable force in our surroundings.
How does this come about?

Gravitation’s third characteristic is that it is always
of the same sign. A positively charged particle on the
surface of the Earth is attracted electrostatically by all
the negatively charged particles in the Earth {essentially
electrons) and repelled by all the positively charged
ones (protons), but gravitationally all particles attract it.

The electrostatic attraction and repulsion are so
perfectly balanced that the resultant force effectively
vanishes, but there is no cancellation in gravitation
since all the forces are of the same sign. So with the
Earth made up of over 10°° particles, the tiny
gravitational forces due to each add up to something
very noticeable (we get tired when we stand for a long
time!) while the vastly larger electrical forces cancel.

Yet the consequence of this smallness of gravitation
is that we have no possible way of measuring how
much a proton attracts another one, nor can we tell
how the electrically and magnetically very active
elementary particles (even a neutron has a magnetic
dipole moment!) react individvally to gravitational
attraction by direct experiment. Even more unimaginable
is a direct measurement of how the more exotic
clementary particles respond to gravitation. Thus we
are confined {o test different ordinary materials just as
Galileo, Eotvos and Dicke did. Accordingly thers is a
gap in our knowledge of how total the apphcability of
Galileo's principle is. But we certainly know nothing
that contradicts it. Onc ingentous argument that has
markedly reduced our area of uncertainty 15 due to
Schifl who pointed out that in different materials there
are different quantitics of the mildly exotic particles
‘virtual’ positrons. This interpretation of the experiments
at least shows that posttrons are no different from other
matter. All in all, the sensible assumption 1s that
Galileo’s principle is completely valid.

The observable of gravitation

When one falls freely all one’s goods fall with one. But
free fall on the Earth is very limited. However, an

1



GENERAL ARTICLES

orhiting satellite is in permanent free fall. As s well
known, m such o bady the fact that everything falls
together produces a state of weighticssness. The
astronaut floats around the cabin, and the drops of
scup {loat equally. Without looking out of the vehicle,
the astronaut has, it seems, no inkling that gravitation
acts on the spacecralt. Gravitation thus appears to have
been abolished for this space traveller. However, this is
not quite true. Whercas Galileo’s principle states that
all bodics at the same place fall equally fast, irrespective
of their composition, it in no way asserts that bodies in
different places fall equally fast. The gravitabonal
acceleration due to the Earth diminishes with distance
from it, and the spacecraft is of finite size. Thus the part
of the spacecraft nearest to the Earth will want to fall a
little faster than the bulk of i, the part farthest from
the Earth a nttle more slowly. The strength of the
spacecraft means that in fact it falls with a compromise
acceleration as a whole, but, say, grains of dust in its
air, if neas the area closest to the Earth will {all a little
faster and so settle In the areas nearest to the Earth,
grains close to the part farthest from the Earth will fall
a little more slowly and so will settle as far from the
Earth as possible. Therefore by observing that the dust
accumulates in the two diametrically opposed areas of
the spacecraft, the astronaut can learn {rom internal
evidence that the vehicle moves in a gravitational field,
Thisy is how gravitation manifests itself as the
nonumformity of acceleration, as the relative acceleration
of neighbouring particles. Of course we are familiar
with this phenomenon. In the example given, think of
the spacecraft as our Earth, of the Earth as the Sun, of
the dust as the ocean, and what we observe are the
solar tides (the sfightly larger lunar tides origimate in
just the same way, but the relative sizes of bodies are
very different). Thus the solar tides manifest to us that
the Earth is falling towards the Sun in its orbit and that
the fall takes place with a compromise acceleration
which 1s too low for the parts nearest the Sun and too
high for the parts farthest from the Sun. {In relation to
the Moon, this motion about the common centre of
mass, which in the solar case 1s inside the Sun, is in the
lunar case within the Earth. This gives a slightly
diflerent picture.)

In a shore location even under the thickest
imaginable cloud, the local physicists could infer the
existence of the Sun and the Moon from the
observation of the tides. The tidal force is the true
universal observable of gravitation. The variation of
gravitation with position 15 always there, always
measurable.

For readers mathematically inchned, this charactenstic
can be expressed in the following form (those not so
inclined should omit the next paragraph):

since a small difference in position characterized by a
small displacement vector o/ (j=1,2,3) will lead to a
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small difference in the acceleration vector &f°, the

rclation between them must be linear and mediated by
an cntity called a tensor:

8fi=a’5x) (where the repeated index j is summed).
(1)

The nine quantities a'; thus define the gravitational
field. To avoid the fheld spinning up a sphere
indefinitely {which is not observed and would be an
impermussible inexhaustible source of energy) the
must have a certain symmetry. In Cartesian coordinates

I'_-
a,=4,

(2)

Newton’s theory of gravitation is essentially the
statement that the @, are minus the second derivatives

of a scalar, the gravitational potential, so that
StV [;

a,= — —. :
N axt Ox/ )

— N
=a,,=4

Poisson’s equation defines the sources of gravitational

[ield as the density of p multiplied by the gravitational
constant G through

ay=—ViV=—4nGp, (4)

This completes the description of Newton’s theory.
Leaving the mathematics for the time being, the
questton of ‘negative mass’ arises. Why is gravitation
always attractive? First we have to define what one
means by mass. The modern physicist, through bitter
experience, has learned that clear meaning can be
attached to terms only by defining them through the
method by which they are measured. It turns out that
there are three distinct ways in which ‘mass’ is
measured and accordingly three distinct kinds of mass:

Inertial mass. This is the measure of the resistance of a
body to being accelerated. For exampie if a hammer
blow of given strength 15 made to hit a succession of
balis of different sizes and compositions, their rgsulting

velociues will be 1n 1averse proportion to their inertial
Masscs i,

Passive gravitational mass. This measures a body’s
response to gravitational attraction and is indeed its

weight, as measured by, say, a spring balance. It will be
called m,,

Active gravitational mass. This measures the ability of
a body to generate a gravitational effect and is
ascertained thereby. Since only very large bodies
produce noticeable gravitational foices, this method is
largely confined to astronomy. We know the masses of
the Earth, the Sun, the Moon, ¢tc. by measuring the
orbits of other bodies in their neighbourhoods. This
mass 15 called w1,

What can we say about the relation between these
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different measures of mass? Do they measure the same
gquantity or not? First we get guidance from Galileo's
principle. Since the acceleration of free fall of a body is
proportional to the gravitational force on 1t, which 1s
itself proportional to m,, and inversely proportional to
its inertia and thus to m, it follows that my/m; is the
same for all bodies and, with suitable units, immay be put
equal to one. Next, Newton’s third law of motion, of
the equality of action and reaction, implied that

. =m, But none of these relations, important as they
are, shows that all mass must be positive,. How would
negative mass reveal itself?

Think first of a body with negative m, and therefore
negative m; and m,. It would repel all bodies whatever
the sign of their mass, since by Galileo all bodies fall
equally fast. If near it there were a body of positive
mass of the same magnitude, then this would similarly
attract afl bodies, including the negative’ one. Under
suitable circumstances they would both move off in the
same direction, the positive one leading, the negative
one chasing it, but keeping their distance from each
other constant. Thus the forces would remain the same
and the pair would rush off at constant acceleration.
‘How absurd,” the reader may think, ‘surely there must
be something 1n physics to forbid this happening, such
as the laws of conservation of energy or momentum.’
Unfortunately our sanity cannot be saved i that
manner, By what has been said, the body of negative m,
has also negative inertial mass m;. Thus, since the two
bodies always have equal velocity, the momentum and
the kinetic energy of the negative body will always be
equal and opposite to those of the positive body, so
that both energy and momentum of the pair taken
together always wvanish. Thus they are perfectly
conserved. Nor could / gain any energy by catching the
pair since I would lose as much from catching the
negative one as I gained from the positive one. Is there
a way of catching the positive one without catching the
negative one? Perhaps, but nobody seems to have
thought through this ‘thought experiment’, which is
very difficult.

Since we never see such a pair, it seems reasonable 1o
conclude that no negative masses exist in our neighbour-
hood and indeed that it would be odd i anywhere
positive and negative masses coexisted. On the other
hand a universe of purcly negative masses has been
imagined and studied by Bonnor. 1t would be very
different from the one we know, but it would contain
no obvious absurdities. However, 1t 1s reasonable lo
confine our attention {0 posifive masses.

Newton’s theory has another mterésting and relevant
aspect which can be explored with the use of a little
clementary mathematics.

Imagine a spherical body of mass M and radius R,
and think of a small body in close circular orbit about
it. How Jong will this satellite take to complete a single
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orbit? Calling its period P, the velocity v of the body
will be the ratio of the circumierence of the body, 2nR,
to P. In its circular orbit the satellite will have a
centripetal acceleration v%/R which must equal the

gravitational acceleration GM/R?, G being the constant
of gravitation. Thus

GM _ »* _(2nR)? _4a’R 5)
RZ R PR p?

Accordingly
P=27(R3/GMY =2n(3/4nG p)t, ()

where p is the mean density of the body, 1.e. the ratio of
its mass M to its volume 472R?*/3.

Thus, after deriving Kepler’s third law for circular
orbits (it holds equally for elliptical ones, with the semi-
major axis taking the place of the radius R), this
equation shows that the period of a close satellite
depends only on the density of the parent body.

Imagine now a series of such spherical bodies all
having the same mean density but each being larger
than its predecessor. The period of their close satellites
are all the same, their mean densities being the same.
But the larger the body, the {aster the satellite has to go
to encircle its parent body in the same nterval of time.
Whatever density 15 chosen there will be a size of body
at which the satellite has to move with the speed of
light! (Of course this is an extrapolation of Newtoman
theory, the validity of which is restricted to slowly
moving bodies, but this extrapolation 1s none the less
illuminating,)

Indeed, since the speed of a particie projected from
the surface needs to be ﬁ times the circular velocity,
even for a slightly smaller body of this density, particles
moving at the speed of light {(and, by inlerence, light)
cannot get away from such a body and so we have
constructed a ‘black holet More precisely we have
arrived at the Newtonian analogue of a black hole.

Note that for any mean density there will be a radius
(and accordingly a mass) for which the body will bg a
black hole. Thus a black hole need not have a hgh
density, but the lower 1ts density, the bigger the mass
has to be. It is easily seen from the equation given that
the minimum mass necessary is proportional to p™ 12,
A body of the mean density of our Sun would nced to
have 500 times its radius to become a black hole!

Relativity and gravitation

Newton's dynamics and theory of gravitation are
splendid pieces of physics, but fell us nothing about
light. This is a very serious defect since light (and other
clectromagnetic radiation) constitute our chief means of
carrymg out observations, In the absence of gravitation.
light and all radiation, topether with its interaction with
matter, is described by LBinstein's special theory of
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relativity (the term ‘special’ means just that it does not
describe the situations in which gravitation 1s in any
way relevant). For the purposes of this article it will be
assumed that the reader has a nodding acquamtance
with the theory of rclativity. In particular, it will be
nccessary for the reader to recall two wmportant
conclusions of it. both amply confirmed by countless
experiments: (i) energy has mass, i.e. it has inertia,
(it} the law of composition of velocitics ensures that it 1s
impossible to accelerate a body {(moving necessarily
with a speed less than that of light} to the speed of hight
ot beyond.

For the mathematically inclined, there is a third
result that will be useful: If two events are observed by
one inertial observer to take place in posiions with
coordinates Xy, Xa, X3), (X;. Xz, X3) respectively at times
r, T respectively then a differently moving inertial
observer will assign different space and time coordinates
to them. but the quantity

(t=T) =[x, — %) +(x %) +{x; —%5)7)/c”

will be found to be the same by both inertial observers
(here ¢ is the speed of light). This statement 1s
analogous to the statement that in a plane the
coordinates of two points will have different values in
two dilferently oriented systems of coordinates, but the
distance between the points can be evaluated from both
giving the same result.

Returning now to the nonmathematical description,
we owe Finstein a most illuminating thought experniment
on the interaction between gravitation and hight, First
the reader should be reminded of an important and
well-established result of atomic physics. An atom of
any element has a ground state and a number of excited
states. 1f it is in ong of these excited states, it can make
a transition to the ground state by emitting light of a
particular frequency, ie. a photon of a particular
energy. If light of this particular frequency is absorbed
by the atom in the ground state it makes the transition
to the particular excited state mentioned before. It will
be evident (o the reader that the atom in the excited
state has more energy than when it is in the ground
state, since it can emit a photon of particular frequency.

Now consider the following situation: A closed chain
supporting numerous buckets is stretched betwecn a
wheel at the top of a tower and one at iis foot. Each
bucket is filled with the same number of atoms of the
same element, but all the atoms on the left side are in
the excited state mentioned while all the atoms on the
right hand side are in the ground state. Thus all the
atoms on the left hand side have more energy than
those on the right hand side, and accordingly more
mass and therefore, by Galileo's principle, more weight,
Hence the left hand side is heavier and will move
downwards, while the right hand side moves upwards.
The excited atoms arriving at the bottom are induced
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there to make the transition to the ground state,
emitting light as described. A set of fixed mirrors 1s 50
arranged that all the light emitted at the foot of the
tower is directed to its top, there irradiating the atoms
in the ground state arriving as the right side of the
chain moves up. Then, by what has been said, the light
shining on them would put the atoms {rom the ground
state into the excited state before they start on their
downward journey on the left hand side. Thus, it seems,
the system would always be in the same condition, the
left hand side heavy and going down, while the right
hand side of the chain is lighter and goes up. Thus the
chain goes round and round, and could be used to
drive a generator!

Plainly, this caanot be, for such a system would
generate energy out of nothing, contrary to the well-
established law of conservation of energy! There must
be a flaw in the argument given, but where can it be?
Given that we know from both experiments and theory
that there are excited states, that more ¢nergy means
more mass, and that more mass means more weight
where can the fault in the argument he? The ouly
possibility is that while the light emitted by the
transition to the ground state of the excited atoms has
just the right energy (i.e. frequency) to excite atoms 1n
the ground state at the same height, this is no longer so
when the atoms to be excited are higher up. Then, we
assume, the light is too low in energy, i.c. too low in
frequency, to excite atoms there, Thus we arrive at the
idea of a gravitational red shift of light. With this
assumption the light getting from the bottom to the top
would be unable to excite the atoms in the ground state
arriving there, and so the paradox would not arise.

We can readily complete our thought experiment to
show that this explanation adequately resolves the
energy problem in our medel. For if tight is reflected
from a mirror advancing into the beam, it is blue-
shifted. So we arrange to have a spinning wheel of
mirrors at the top of the tower. 1f it spins at the correct
speed, this rcflection from moving mirrors compensates
for the gravitational red shift, and the light is again
enabled to excite the ground state atoms arriving at the
top. However, light exerts a pressure, and so 1t
consumes energy to turn the wheel of mirrors, just as
much energy as the chain produces. Thus the interence
of a gravitational red shift resolves our problem: The
model neither generates nor consumes energy, in full
agreement with the law of conservation of energy.

As soon as Einstein stated his deduction of the
necessity of a gravitational red shift there was great
interest in testing his idea by experiment and
observation. However, the shift is very small. The
largest one in our neighbourhood occurs for light from
the Sun. the spectral lines of which are generated 1n the
Sun’s atmosphere. Light from the Sun ‘ascends’ from
there (i.c. it moves against the Sun’s gravitational [orce)
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unti} it reaches the neighbourhood of the Earth to
whose surface it finally descends. (However, the blue
shift it suffers in this descent is well below one
thousandth of the red shift acquired in the ascent.) Thus
in a terrestrial laboratory the spectral lines in the light
of the Sun should, according to Einstein, be slightly
shifted towards the red compared with the same lines
produced in the laboratory, and this shift should be just
about observable. However, 1n spite of much painstaking
and skilful work (especially by M. G. Adams in Oxford
during the fifties), the results were not wholly decisive.
The trouble arose through quite secondary shifts of
spectral lines caused by conditions in the Sun’s
atmosphere that could not be reproduced 1n the
laboratory and could not, at the time, be computed. It
will also be evident that the precision with which the
position of a spectral line can be measured must
depend on how wide or diffuse the line 1s, In the late
fifties, in a wholly separate field of physics, Mossbauer
discovered a way of producing exceedingly narrow
gamma-ray lines, far narrower than had previously
been considered possible. In 1960 Pound and Rebka of
Harvard used this Mossbauer effect to compare at the
top of a water tower a Mossbauer line generated there
with one produced at the foot of the tower, and indeed
measured the Einstein red shift exactly as predicted,
though of course it is quite minute in such circumstances
{one part in 300 million million). This experiment
(repeated since with ever greater accuracy) fully
establishes the reality of the gravitational red shuft.

Its importance is not diminished by its smallness.
Spectral lines are the basis of time keeping. The most
accurate clocks are in the standard laboratories round
the world, using exceptionally stable spectral lines of
caesium or ammonia. The most precise watches of our
day use a spectral line {in the MHz range} of a quartz
crystal. Earlier watches used the oscillatory frequency
{ie. spectral line) of a spring. Pendulum clocks are
excluded because they are not of universal applicability,
requiring as they do a gravitational field. Even on the
surface of the Earth their operation varies with altitude
and location.

Thus what the gravitational red shift means i1s quite
striking: Take two watches of identical construction.
They will keep the same time if kept side by side. But il
one is in a higher position than the other, they will no
longer keep in step! Though the difference in tick rate
may be small, it is of fundamental significance.

Physicists have learned from much expericace not Lo
ascribe any absolute existence to any of their concepts.
Just as it was necessary to define mass by the method
by which it is mecasured, so we cannot asscri the
existence of the ‘right time in any sensc. Time 15 that
which s mecasured by clocks {or we can  say
‘manufactured by clocks’) and if identically constructed
clocks have different tick rates in dufferent positions,
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then time is different in the two locations. There 1s no
sense in which one can assert that the higher positioned
clock gives a ‘right time' and the lower positioned one a
‘distorted time’. One is as good in one location as the
other is in the other one, but time itself is different 1n
the two places.

[t is instructive to look at this graphically. Draw
time, as is conventional in physics, vertically up and the
one relevant space dimension, height, horizontally. One
vertical line then represents the foot of the tower,
another the top, and suitably sloping parallel lines the
travel of light signals from the bottom to the top.
Consider now the depiction of two successive such
signals. The diagram shows a parallelogram, but the
time interval between the signals, measured at the foot
by the local clock there and correspondingly at the top,
will have different magnitudes at the bottom and at
the top because of the difierent rates of the two clocks.
Thus our parallelogram has unequal opposite sides.
This is incompatible with Euclidean geometry. Thus a
non-Fuclidean geometry must hold in the two-
dimensional space of time and height. Two-dimensional
non-Euclidean geometry need not frighten one, since we
are used to it from the curved surface of the Earth,
However, if we add to height the two horizontal
dimensions of a (nearly) spherically symmetric Earth,
e.g. latitude and longitude, then it turns out that a
hetght-dependent time is incompatible with a Euclidean
space-time.

In mathematical] terms we are dealing with a
spherically symmetric space-time

ds?=f(r) dt? — g(r)dr? — r*hir)(d@* + sin2d ¢?), (6)

in an obvious notation.

1t is readily established that such a space-time cannot
be flat {Euclidean) unless f{r) is a constant, Since there is
a gravitational red shift, f(r) varies with height r, and so
space-time is non-Euchidean.

It is worth pausing for a moment to look back at the
chain of argumentation employed. Starting [rom
Galileo'’s principle, we added the framework of special
relativity (energy has mass, time and space) and the
existence of spectral lines. This is enough to infer that
gravitation leads to a non-Euclidean nature of the
world’s gcometry.

The mathematical theory of gravitation {gencral
relativity)

Return to the ecarlier mathematical formulation of
Newton's theory, vie. equation |
ISfi:Hj(ij[Whﬁl't: the repeated index s summed) (1)

This is clearly incompatible with special relatinvaty, since
this describes a velocity-independent acceleration. \f the
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reference particle were moving at nearly the speed of
light, another particle displaced from it in a suitable
direction could be accelerated through the speed of
light, a process incompatible with our knowledge of
physics. Thus a'; in equation | must, be velocty
dependent.

The easiest way to achieve this 18 to regard equation
{ as a four-dimensional equation and put the velocity ¢*
into the picture through

o'y = byt )

With b antisymmetric between § and k, this would,
through the algebra of special relativity, avoid any
possible transgression of the speed of light. Unhappily
antisymmetry between i and k i1s incompatible with
symmelry {of equation 2) between i and j. We are thus
driven to the next more complicated form,

¢\ =Cl, vty (8)

With symmetry between i,j and between k!l and
antisymmetry between i and k (and between j and {} all
the conditions are met. Transgression of the speed of
light is impossible, and for low velocity (for which only
the time component of v differs significantly from zero)
the Newtonian equation 1 is regained. Thus equation 8
extends equation 1 naturally and easily from the low
velocities well described by it to any velocity up to (and
including) the speed of light. This major progress is
achieved at a cost. [nstead of six free components of the
symmetrical three-dimensional two-suffix tensor a we
have the four-dimensional four-suffix tensor C. Iis
complicated symmetries ensure that of the basically 256
components of such an eatity only 21 can be chosen
freely. But it is not surprising that the huge ncrease in
the complexity of the picture descnbed involves a
growth in the number of free components from six to
21,

Now return to the non-Euclidean character of space-
time demonstrated by equation 5. The least complicated
non-Euclidean geometry is Riemannian. In this geome-
iry a most important entity is one describing the
deviation of space-time f{rom flatness. This 1s the
curvature {€nsofr

R )

We need not discuss here how it is evaluated, but
point out its essential symmetries which (but for a
different convention in the arrangement of the sulfixes)
are exactly as for the C*,, of equation 8 but with one
additional identity (reducing the number of free
components to 20) and a set of differential identities
governing the variation of R from point to point. Thus
the vital equation 8 describing the relative acceleration
of neighbouring particles, the fundamental observable
*of gravitation, finds a beautiful geometrical interpretation
by identifying C with R. This effectively replaces
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equation 3. But what about equation 4 which links
gravitational field to its sources? How can its
relativistic equivalent be found?

First, it is plausible that in a relativistic theory the
active gravitational source should depend not only on
matter itself but on energy, momentum and stress. A
box full of radiation should have a different gravitational
effect than an empty box. Moreover whereas in
Newtonian theory the permanence of its source, mass,
was an extrancous addition to the theory, it would be
agreeable if the conservation characteristics of mass
and momentum could be linked to its gravitation-
causing character. Einstein achieved all thns brilhantly.

First, he described the source of gravitation through
the so called energy-momentum tensor 7. It is most
easily visualized in a tenuous cold gas where

TH=pp't/. (10)

o being the density of matter and of, as usual, itg
velocity vector. It will be recalled that n Cartesian
coordinates ,its time component (according to special
relativity is

O=[1+@") + (% + %)V (11)

Thus 7°° represents the mass density enhanced by the
kinetic energy, 7°' the 1 component of momentum,
while the other components also have sigmficance.
Proceeding to a dense hot gas, mean values over the
velocities have to be taken so that the space-space
components represent stresses and pressures. This 1s
then readily extended to elastic solids.

Next Einstein constructed a symmetrical two-suffix
tensor G¥ whose components are a linear combination
of components of the curvature tensor R and finally he
put

GY=~kTY, 12

where k is a constant depending on the choice of units.
This corresponds closely to equation 4, where in the
Newtonian scheme a linear combination of the a‘; was
put equal to the source, the density of matter. But quite
apart from the ability to describe fast moving matter
and light, equation 12 has another superiority over
equation 4. For the Einstein tensor (Y, through the
differential relations of the curvature tensor, satisfies a
kind of conservation law which by equation 12 implies
similar conservation for the energy momentum tensor
7Y, This completes our mathematical description.

First results of the theory

Our solar system is very amenable to calculation. The
masses of the planets and their satelhtes are so small
compared to the mass of the Sun that one can first
work out the orbit of each planet as though the Sun
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was the only attracting body, and then add the
influences of the other bodies as minor perturbations. 1t
is perhaps not surprising that for slowly moving bodies,
as most planets are, the relativistic orbits are virtually
identical with the Newtonian ones, but of course
relativity allows us to treat light and fast moving
bodies as well. The only fast moving planet 1s Mercury,
and relativity readily leads to a deviation from the
Newtonian orbit that had been known and was a
puzzle for many decades before. Einstein’s theory of
gravitation fully accounts for this orbital feature. The
Einstein gravitational red shift has already been
discussed. The effect of the Sun on a passing ray of hight
can only be described relativistically. Although the
forecast of the theory was for long difficult .to test
astronomically, it has been strkingly verified by the
observation of space probes that go behind the Sun.

It is most gratifying that the theory has passed all
these tests so well, for general relativity 1s the simplest
acceptable theory of gravitation. These tests were
checks on general relativity, and did not offer a choice
of going back to Newtonian theory since this, with its
absolute time, is not just unacceptable but indeed
unimaginable to a modern physicistt One can use
Newtonian theory not as a description of nature, but as
a tolerable approximation when velocities are low,
gravitational fields are not too strong, etc.

The Newtonian approach to black holes was
described earlier. In general relativity it is a somewhat
easier concept. If we look from a distance at a sphere of
given density and large radius, there will of course, be a
sizeable red shift to be observed. The larger the sphere,
the bigger the red shift, i.e. the slower things seem to be
happening there, the less the amount of light received.
For a certain radius, the red shift will be total. We will
therefore receive no light from such a ‘black hole’.

Gravitational energy

Energy is perhaps the most fundamental and universal
concept in physics. Energy occurs in many different forms:
The energy of motion (kinetic energy), heat, strain
energy of an elastic body, pressure energy (e.g. of
steam), the chemical energy of a combustible substance,
electric energy, the latent energy of an excited atom (as
previously discussed), etc. etc. However, there are some
difficulties with the concept of gravitational energy.
Even in the Newtonian theory there are some problems,
as will now be described.

The simplest case perhaps is that of the weight in a
pendulum clock. When the weight is in a low position,
energy has to be expended to raisc it 10 a high position.
Once it is there, it can descend slowly, giving energy 1o
the clock mechanism to make it work, Thus energy has
gone from the winder to the weight and then into the
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mechanism. The weight has stored this energy not by
changing its composition, not by being hotter, but by
being higher up in the gravitational field of the Earth.
Thus this is an energy of position or, as it 15 generally
called, a potential energy. (It is closely related to the V
of equation 3.) Though strictly speaking this 1s an
energy of interaction between the weight and the Earth,
there is little harm in ascribing it essentially to the
weight and supposing it to reside in the weight, though
there is nothing to check this assumption.

Next let” us consider a somewhat more complex
system, a pair of stars in elliptical motion about therr
common centre of mass. At one moment they are far
from each other, moving relatively slowly, then their
distance diminishes while their speeds increase in this
descent towards each other, and their velocities reach a
maximum at closest approach, diminishing thereafter as
their distance increases. Thus their kinetic energies are
at a minimum when they are farthest from each other
and at 4 maximum when they are nearest to each other.
By conservation of energy, there must be a potential
energy going through the opposite variations so that
the sum of the kinetic and potential energies
remains constant. This potential encrgy is evidently a
property of the system and cannot be assigned
meaningfully to one or the other body in any sensible
proportions. Thus this potential energy has no specific
location. This is perfectly acceptable in Newtonian
theory where potential energy is merely a useful
mathematical construction to make the books balance.
But it will be readily understood that in relativity in
which energy inevitably has mass, a nonlocalizable
form of energy is wholly unacceptable.

Before we leave the discussion of energy in the
Newtonian theory, some further points can be made
especially about the transfer of energy by gravitation.

In the early part of this article it was shown how the
Moon raises tides on the Earth, Since the Earth rotates,
these tidal bulges (of the ocean, the solid Earth and the
atmosphere) will rub against the Earth just bke a brake
shoe rubs against a wheel. This tidal friction does
indeed slow down the Earth’s rotation. A few billion
years ago, the Earth probably had a rotation period of
only about 8 hours, spinning three times as fast as
today. With our very precise clocks, we can notice the
slowing down in our time. Moreover, this tidal friction
affects the motion of the Moon. The tidal bulges, being
dragged forward by this friction, themselves exert a
gravitational force on the Moon dragging it forward in
its orbit, and thus very gradually driving the Moon
further away from the Larth (though the Moon must at
some stage in the past have been much closer to the
Earth, it is reasonably cleur that the Moon did not
originate from the Earth). Alternatively it 15 evident that
the angular momentum of the Farth Noon system
cannot change. The diminution of the Furth’™s spin must
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be compensated by an increase in the Moon's orbital
angular momentum, equally making clear its gradual
recesston {rom the Earth.

All this can be cheched from the historical record of
eclipses of the Sun and the Moon. Especially a solar
eclipse through its [ocation on the surface of the Earth
is most informative about changes in the Earth’s period
of rotation. in the Moon's orbit, and even in the
motment of inertia of the Earth. Imittally the Earth
raised large tides of the solid material of the Moon. The
internal friction of this squeezing of its body has been
so large that the Moon’s spin has been slowed down to
the period of its revolution about the Earth. This is why
the Moon always presents the same face to the Earth.

Evidently there are intricate translers of energy
within the Earth-Moon system, but it 15 amusing to
construct mentally a kind of toy that demonstrates such
gravitational energy transfers with total clarity, Let us
again imagine two originally spherical bodies A and B
in highly eccentric orbits about their common centre of
mass, and let us further imagine that on each of these
bodics there are engineers capable of changing the
shapes of the bodies at will, but keeping them to be
axially symmetric about the normal to the common
plane of the orbits. Thus emther body can be changed
from being a sphere to being an oblate or prolate
spheroid. Each body, moreover, has electric storage
batteries so arraneed that by reducing their charges
they can energize the shape changing machinery where
such a change requires energy, and increase their
charges where the change of shape yields energy.

Three points need to be made now: An oblate body
attracts more strongly in its equatorial plane than a
sphere of the same mass, a prolate body less so.
Secondly the tide raising force, which aims 1o lengthen
a body along the line joining the two, favours an oblate
over a prolate shape. Thirdly the tide raising force
diminishes greatly with distance.

Suppose now that the engineers on A persuade their
colleagues on B to make always the opposite changes
to their own object. Thus whenever A goes prolate, B
goes oblate and vice versa, in such a manner that the
mutual gravitational attraction between the two bodies
always remains the same, as when they both are
spheres. Thus the orbits will remain always the same.
Now suppose that in one revolution A changes s
shape {[rom a sphere to an oblate spheroid when the
two bodies are in proximity. There the tide raising force
is great, and favours this change of shape so that the
operation yields a substantial amount of energy greatly
increasing the change on A's battery. When the bodies
are at their maximum distance apart. A returns 1o the
spherical shape. This will cost it energy, but not very
much because when B is so far from A, the tide raising
force is very weak. S50 although the second change of
shape reduces the charge on A’s batteries, it will be

%

much less than the gain experienced earlier. Thus at the
end of the revolution, A has gained energy. Naturally
B's experience is the opposite. He had to go prolate
when this was most expensive as in proximity A's tide
raising force on him is so strong. His battery will be
badly discharged in this manoeuvre, Of course he gains
some energy when he changes from prolate to spherical
at maximum separation but not very much because the
tide raising force is then so weak. Thus at the end of the
revolution, the situation is just the same as at the
beginning, except that A’s batteries carry more charge
than before, and B’s less. Thus energy has been
transferred from B to A purely by gravitational means.

Now let us leave Newtonian considerations, however
elegant, behind us, and see what reality one can give to
the energy concept in relativity. As has already been
stated, potential energy can have no place in a
relativistic theory of gravitation because it 13
nonlocalizable. Since mass 15 a necessary consequence
of energy, and a nonlocalizable mass is an inadmissible
absurdity, we have to manage without potential energy,
although this was needed in Newtonian theory in order
to get an energy balance. The energy—-momentum tensor
introduced earlier only encompasses nongravitational
forms of the energy which may be called tangible. Since
tangible encrgies are not conserved (remember the
weight in the pendulum clock), Einstein’s law ol
conservation is really a law of non-conservation. But
not only is the conservation of energy a cornerstone of
physics but we know that the Newtonian equations are
an acceptable approximation to the relativistic (and far
more complicated) equations for slow motions, modest
gravitational fields and pressures small compared to
densities. Thus somehow in relativity conservation must
come in through the back door. The truth of the matter
is that although general relativity has been our theory
of gravitation for three quarters of a century, its
concepts and equations are so different that there is sbii
much we do not understand in any detail.

Though the relativistic model of A and B is beyond
our mathematical competence one can investigate a
similar mode! which has axial symmetry, A being a
spheroidal shell surrounding the spheroidal solid B.
One can then indeed demonstrate that slow changes of
shape shift energy between A and B, but the sum total
as expressed by the external gravitational field, Is
strictly conserved. So conservation applies but only to
systems as a whole as long as motions are slow. Much
still remains to be clarified in the field, but the overall
principles seem to be intelligible.

Gravitational waves

An innocent question ‘How fast does gravitation
travel?” can lead us into illuminating though only
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partially solved problems that concern fast motions, a
topic so far carefully avoided. The physicist will regard
this question as meaningless until a sensible model has
been specified in which conceptually consistent {(but not
necessarlly practicable) observations would indicate the
answer. Perhaps one’s first reaction to this attitude
would be: ‘Suppose the Sun suddenly ceased to exist,
how soon would the Earth leave its orbit? Some 81
minutes later when we would see the disappearance of
the Sun, or earlier, or later? This is still a meamngless
question since gencral relativity, our theory of gra-
vitation, incorporates the law of conservation of mass,
and so must rule out the sudden abolition of the Sun.
The next more refined question might be: ‘Suppose the
Sun were suddenly to acquire a velocity at right angles
to the plane of Earth’s orbit, how soon would the Earth
leave its orbit? Again this question must be ruled out
of order since our theory encompasses the law of
conservation of momentum. But at the next level of
sophistication the theory is obliged to give an answer:
‘Suppose the Sun rapidly changed its shape from
spherical to spheroidal. How soon would the Earth’s
orbit be affected? Indeed we know how to answer this
question. First, 1t will be recalled, when the Sun
changes to become an oblate or a prolate spheroid, the
attraction in its equatorial plane would be aflected.
Secondly, there would be no inkling of this change
gravitationally before light from the new shape reaches
the Earth, and then, some 84 minutes after the change
took place, the Earth’s motion would begin to be
affected. Though most of the change would occur then,
there would be some aftermath 100, a kind of gradually
diminishing reverberation. Thirdly, if after this excursion
into a spheroidal shape the Sun then resumed its
normal spherical form, there would be a certain change
from what things were like before these events.

This last point is not quite simple. As the Sun
changes its shape, its gravitational influence alters, its
variations propagating with the speed of light (with
minor squiggles following rather more slowly). The
mathematical physicist calls such propagating fluctuations
waves, whether or not they are of sinusoidal shape.
These gravitational waves thus signal information
about the Sun’s shape to all and sundry. It 15 a general
rule in physics that information cannot be transmitted
without some energy. Therefore the Sun, in changing
from spherical to spheroidal shape and back, must have
lost energy and therefore mass. Whatever the shape of
the fluctuations, the resulting radiation must have
reduced the mass of the Sun, and 1 the (inal situation 1t
must be a lesser source of gravitution than it onginally
was.

To put it mathematically, the mecasure of the
spheroidal deviation from spherical shape is called the
quadrupole moment Q. Then the cffect on the Sun’s
mass A turns out to be given by
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where 4 18 a universal constant that, if suitable units are
chosen, 1s purely numerical. Several points emerge from
this equation. First it makes patent that as has been
said, radiation of.gravitational waves inevitably leads to
a mass loss, and not to a mass gain. Secondly it
demonstrates that our theory of gravitation necessanly
Is nonlinear, which is the prime cause of making the
evaluation of its mathematical consequences so complex,
that much still remains to be explored. Third 1t shows
that the rate of mass loss or, 10 put it more positively,
the amount of energy carried away by the gravitational
waves depends on a high time derivative. If the
fluctuations are smusoidal the rate of mass loss goes
with the sixth power of the frequency.

While all this is theoretically fairly complete and fully
self-consistent, i1t leaves wide open the question of what
strength of gravitational waves are travelling round the
universe in fact. Fortunately for us, the Sun shows no
tendency to change its shape, but a distant observer
would notice changes in the quadrupole moment of the
solar system due to the revolution of planets round the
Sun. Jupiter, by far the most massive of the planets,
would dominate this, but the period of its.orbit is so
long (101 vears) and therefore the frequency of the
variation of quadrupole moments so low that this
whole huge solar system turns out to radiate a mere 1%
kW in gravitational waves! If there are powerful sources
anywhere in the univers¢ they must involve huge
masses 1n rapid motion. One’s theughts turn to double
stars. One formed of two ordinary stars like our Sun
almost in contact would have a period of revolution of
a few hours. Yet even so, radiation by gravitational
waves would have ouly a tiny fraction of the energy
radiated by these stars as light and heat. Shorter
periods are neceded which means the stars have to be
closer and therefore far denser than our Sun 15. The
densest stars we can conceive of are composed of
neutrons, and some Such neutron stars manifest
themselves to radio astronomers as pulsars. Two such
neutron stars in close proximity forming a double star
would be tremendous radiators of encrgy (and angular
momentum) by gravitational waves. Since the mid
1970°s we have known a pulsar whose signals can hest
be interpreted as ortginating from a double star system
of very high frequency. Morcover, miaute changes in
characteristics revealed by radio astronomy are exactly
those that our theory of gravitation would predict for
such a system. Thus we have an observational test of
the theory that confirms its predictions for the cmission
of gravitational waves, one of its most sophisticated
CONSCYUENCLS,

What about the reception of gravitational wasves?
Yanations in stresses and distances could reveal thetr
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incidence on Earth. Undoubtedly their strength 18
minute, but a great deal of thought is going into the
design of exceedingly sensitive reccivers of gravitational
waves. Once they are built, and make detections, a
new window will have been observed on the upniverse:
The era of gravitational wave astronomy will have
begun.

Conclusion

This brief description of the field of gravitation has
involved an introduction to our modern theoty of
gravitation, Finstein’s general theory of relativity, The
approach used has been largely non-mathematical but |
hope has given the reader an impression of this area of
science in which so much still remains to be explored.

Food prospects in India by the turn of the

century

L. 1" Venkataraman

The continuing population pressure demands greater efficiency in food production systems. Self
efficiency in food front by 2000 AD can be achieved only by specific shifts in farm strategies. Coarse
grains, the mainstay of rural population, needs greater attention. The losses of grains in field and
storage are to be minimized. Biotechnological methods to augment food supplies should

complement traditional technologies.

Today, India is the fastest growing country In the
world. Our population is projected to grow even higher
than that of China and is likely to touch the billion
mark by the turn of the century. This alarming growth
in population will in turn increase the demand for food.
Meeting this need will require increase in food
production, decrease in food losses, improvements in
food processing, and enhanced nutritional quality and
safety of processed foods.

World Development Report (WDR} 1990 has stated
that there is considerable potential for progress towards
reducing poverty in India. For this, higher ivestment
with better domestic saving rates and external borrowing
will be needed. India's growth rate s unlkely to exceed
2% per capita a year over the decade with 370 million
people below the poverty line by 2000 AD. Between
1985 and 2000, the incidence of poverty n the
developing world has been projected to fall from 33
percent to 18 percent and the number of poor from 1.1
billion to 82.5 mllion (Table 1}.

The food problem cannot be separated from the
challenges of population growth and efficient organiz-
ation of food production systems. Current trends 1n

N
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population growth, food production and food con-
sumption cannot continue; they need to be locked at
very carefully. Population growth must be controlled if
massive famines are to be avoided in a predominantiy
monsoon-dependent country like India.

The technological developments that are hkely to
have the greatest impact on food production should
also emphasize simplicity, low cost, labour-intensiveness
and appropriate technology. The fickleness of weather
still determines whether the poorer section of the
population will meet s food demand or face
starvation. Qur couniry will fneed to give maximum
attention to agriculture in order to
1. assure basic food secunty to the people,

2. improve abysmally low nutritional standards and
3. create surpluses for poverty alleviation programmes.

Table 1. Poverty 1n 2000 AD

——— ™ -

incidence of Numbper of
poverty poor
{%) {mulion)

Region 1985 2000 1985 2000
China 200 29 210 35
Indiz 55.0 254 420 255
Developing

countnes 32.7 1840 1125 825

et ————— el el

el e, .

Based on world development report. Poverty hine a1 3 370
annual tncome.
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