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The paradox of large samples

S. Kunte and A. P. Gore

For large samples, standard statistical test procedures almost always reject the hypothesis of
interest, thus creating a rather paradoxical situation. In this article we show that the basic reason
for such a situation is that, the procedures are based upon fixed predetermined level of significance,
choice of which does not depend upon the sample size. We propose to resolve the problem by making
the choice of the level of significance dependent upon the size of the sample.

WITH progress in instrumentation and electronics many
laboratory measurement processes get automated,
yielding large and accurate data sets. This is of course a
boon. But larger the data set greater is the need for
summarizing and modelling. When a plausible model is
developed, there is a patural desire to see if the data
bear it out. For this the traditional prescription in
statistics 1s the goodness of fit y? test. It gives a measure
of discrepancy between observed frequencies and
frequencies 1o be expected if the model is ‘good’. If this
measure of discrepancy is too large 1.e., greater than the
so-called 5% value of the ¥ distribution, the model is
rejected. Otherwise the model is accepted as plausible,
at least provisionally. Or such is the traditional
statistical wisdom.

A scientist with huge data sets 1s likely to get
frustrated practising the above approach; for it may
turn out to his dismay that the goodness of fit test
mvariably rejects the mode! proposed by him. Where is
the hitch? Is statistics wrong? Is a precise guantitative
model impossible for the data? Is having many
observations a ‘bad’ thing? We propose to argue in this
note that the answer lies elsewhere. The difficulty is
with the basic logic behind the present practice
statistical tests of hypotheses, which was quite adequate
for traditional ‘small’ samples but fails when samples
are ‘large’. It 15 not easy to define the terms ‘small’ and
large’ in this context. But as a thumb rule we will say
that sample sizes of order 10* are small while those of
order 10* are large.

We shall illustrate the weakpess of the traditional
stalistical prescriptions with reference to a stmple
problem namely testing the hypothesis that mean of a
normaf variable (with unit vdriance} 1s zcro against the
alternative that it 15 ¢ where £ is any fixgd number
greater than 0. The test statistic for this problem s

Z=/nX,

whire X is the sample meun and n the sample stze. The
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traditional most powerful test rejects H, at 5% level of
significance if Z exceeds 1.64. It 1s well known that if
the true mean is even slighly bigger than zero, say g,
then as sample size goes on increasing, the sample mean

approaches ¢ and \/E X goes to infinity guaranteeing
rejection of H, This is indeed as it should be.
Traditional theory lauds this by calling it the
consistency of the test procedure.

This brings us to the question of level of significance
x the provabiity of wrongly rejecting H, {type 1 error)
and f the probability of wrongly accepting H, (type 11
error). Traditional prescription Is to fix « at a pre-
assigned level, which is usually taken to be 5% or 1%,
Among the tests which satisfy this condition choose
that test which maximizes the power (1—f). The test
described above has this property and so is the most
powerful test for the problem.

In this argument since the value of § 15 not
controlled, there is an tmplicit acceptance of the fact
that a somewhat high level of f may have to be lived
with even after selecting the most powerful test
procedure.

The justification offered for controlling « by fixing it
at a suitably low level is that rejecting the nuli
hypothesis when in fact it is true is a more serious
error.

The paradox of the situation with large samples now
becomes clear. Elementary probability calculations can
show that in the above procedure, while ¢ remains lixed
at say (.03, f decreases to zero as saumple size increases,
Now with large samples, one may more often reject §
wrongly but will almost never accept it wrongly. So
now i1 more serious error is committed more often. We
shall therefore assert that good tests should necessarily
have the property that “wrong rejection of the null
hypothesis (or the maodel) has a lower probability than
wrong rejection of the alternative hypothests’, We
propose 1o put this as un exdra conditon on an
otherwise reasonable test procedure. The condition, in
cffect, translates fiself into the selection of the level of
signuficanye which iv pot more than a pre-assigned level
and should go 1o zeto as n tends to inhorty., This
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suggestion will usually say that the critical value for the
standardized test statistic should go to infinity as the
sample siz€ goes to infinity. This suggestion that the
evel of sigmificance should go (o zero as n tends to
infinity can also be found'. However, he had not
specified the rate at which this should happen.

[t ts therefore necessary that the critical value or the
cut-off point (and hence the corresponding level of
significance) must be made dcpendent on n. Let us
denote such a level of significance by =z, and the cut-off
point by ¢, Thea for the problem of the mean of a
normal distribution we have

2,=Po{\/nX>c)
=P(Z< ¢,

where £ is a standard normal variate. Similarly,

B.=P(\/nX <c,)
=P(Z<c,—/n)

Our requirement is that «, < 0.05 and «, < ..
To get a specific value of ¢, for large n, we will solve

or

Co= (\/;.'[2] .

Thus if the sample size is 10,000 and ¢=1, the cut-off
point to be used i1s 50 and not 1.64.

Here we have been able to compute ¢, precisely
because we could compute # which is a function of #, &
and we have assumed that ¢ 15 a fixed known. In
statistics this corresponds to saying that we have a
simple alternative hypothesis. If the alternative hypo-
thesis 15 a composite hypothesis like 8>10, then the
probability of type two error § will become a function
of 6 and our condition of o, 8, will have to be
suitably modified, which involves mathematics of
greater complexity.

For the probiem of goodness of fit of a model, the
alternative hypothesis is much more vague. It is not
quite clear how the cut-off point of the y? test of
goodness of fit may be adjusted to ensure a similar
property, because here the alternatjve hypothesis is not
well-specified. The following intuitive attack on a
related problem seems reasonable.

Suppose we wish to test the null hypothesis that the &
possible outcomes of a random -experiment have
probabilitics pg, i=1,2,...,k (such that these k values
add up to 1). The alternative 15 that the probabilities
are p;,, i=1,2,...,k The goodness of it x? test statistic
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T follows, asymptotically, a central y¢ distribution with
k—1 degrees of freedom if H, is true and a noncentral
y? distnibution with k—1 degrees of freedom and with
noncentrality parameter A when H, is true®, where

k - 2
i=ny @20 2 5 (say)
1=1 pui

The test rejects £, if T is farger than the tabulated y?
value of assigned Jevel of significance x As before,
notice that given large samples, anything except perfect
agreement with the-null hypothesis means rejection of
H,. Yor example consider the null hypothesis that in
human births, both sexes are equally Likely. We will
consider two sample sizes, 2Q and 2000 (with the same
observed sample proportions). (Se¢ Table 1).

The y* values given in the table jllustrate the point
that the y? statistic T becomes significant even when
the relative proportions in observed data remain
unchanged, if the sample size increases. The tabulated
vafue of x* with one degree of freedom at 5% level of
significance is 3.84. Thus even though the sample
proportions remain the same, the conclusion changes as
we move from the sample size of 20 to 2000,

The above test procedure does not take into account
the change in the probability of type two error, which,
for the case of the sample of size 2000 may in fact be
smaller than the fixed level 0.05 of type one esror. Thus
instead of fixing the cut-off point from the ¥? table,
independent of n, we should choose it such that

P{}(T}fn);‘::PI {T{{"ﬂ).

To compute the term on the right hand side, in the case
of the muitinomial problem with k classes, we can use
the noncentral x? distribution with the noncentrality
parameter A=rnd, which would be large for large n. For
a noncentral x? variate 7 with degrees of freedom v~

Table 1. Sensitivity of x? test for the hypothesis of equal
proportions n sexes of ofisprings {fictitious data)

—

Small s.;m;;ie Large sample

(n =20 {n=2000)
Observed Expected  Observed Expected

Male 11 10 1100 1030
Female 9 10 900 1000
x? statiste 0202 202
with 1 4
Conclusion:  Accept the ~ R-LEJGCI the i

hypothesis of equal hypothesis of

proportion equal proportion
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and noncentrality parameter 4, it is well known? that
(T—(v+A))R2K+2)]}

tends to a standard normal variate as 21— oo for fixed v
(or as v— o for fixed A).

In our case, the degrees of freedom k—1 are fixed
while the noncentrality parameter nd tends to infinity.
Hence using the normal approximation, the cut off
point ¢, satisfies

_ ¢,—(k—1+n0)
P“(T}f")_P(Z ) [2(k—1+2n5)]*)'

Using the normal approximation for the term on the
left hand side, {i.e. assuming that k is large) we get

P(Z-f:: B E;;;((E;);i)zf’(z{ c,—(k—1+né) )

[2(k—1+4+2nd]?
Equating the upper limits on Z we get

_k—1+nd) 2k~ )1+ (k=1 [2(k—14+2n5)]}
" [2(k— D] +{2(k—1)+2n8]* |

C

Ignoring terms of order 1 /ﬁ
c,=k—1+ {$[né(k—1)]}%

If & is known, this provides the suitable cut-off point
to carry out the test. In general, 0 15 unknown. A
common prescription for choosing ‘class limits’ in a 2
goodness of fit test with k classes is that under H,, the
classes should be equiprobable ie. py;=1/k for every i.
Suppose our alternative value of p(; is such that values
of po;— P i=1,2,...,k are of the order 1/k% Then & is
also of the order 1/k2.

In these circumstances the cut-off point c,, suitable
for large n and k(> 30) is

c =k~ 1+(n/2k)}

Il k is 30, the values of ¢, are

" 10,000 50,000 100,000
. 40 58 70

When we compare these with the 5% cut-off value for
29 d.f. namely 42.6 we sec the implication. Clearly there
is no need to work with a value of a larger than the
traditional value. Hence we recommend using the larger
of the two values, one being the value from the ¥? table
and the other being given by the formula above.

The calculations of ¢, so far are based on normal
approximation to central and noncentral y* distribu-
tions. This requires that not only 18 n large but k 15 also
bigger than 30. Such is indeed the case in many

R

problems with large data. However, it is also common
to have a model with a fairly small value of k. This
would require alternative treatment to the extent that
the level of significance is calculated using the 2
distribution with k—1 d.f. while the probability of type
IT error is obtained using normal approximation. The
appropriate value of the cut-off point ¢, for which
®,= f, can be obtained with the help of a computer
program.

In the example of the human sex ratio, the null
hypothesis says that the probability of a male birth is
0.5. Suppose the alternative is that the above

—_ 2
probability is 0.6. Then ¢ is 2(0'6 0) ={0.04. Hence

the cut-off point ¢, satisfies the equation

¢,— (I +0.04n)
[2(1+0.08n)]} :I

P(yi > c,) = P[Z <

Using a computer it can be seen that this is
approximately satisfied by ¢,=22.1 for n=2000, which
gives 2,=0.259 % 1077 and 8,=0268 x 1073, Such a cut-
off point, one notes, will lead to acceptance of H, in the
present problem.

In conclusion we wish to point out the following.
Firstly, the paradox of large samples is caused because
of the insistence of conventional fixed levels of
significance which leads to committing the more serious
error more often. It is not a weakness of a test, It
happens whenever a ‘consistent” test is applied to
massive data. The way out is use of unconventionally
small significance levels such as two or three per million
as seen n our illustrative example. Secondly, no general
answer 1s available 1n statistical literature as to what
the precise cut-off point 1n a test for large samples
should be. We have obtained the answers in two
particular cases where the alternative hypothesis is
simple. Perhaps the most important message to the
experimental scientist is that text book prescriptions of
I or 5% level of significance for statistical tests may not
be suitable for data involving large samples. A more
careful analysis would be needed before a modcl is to
be rejected.
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