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ABSTRACT - In this article, we review the step-by-step progress made in the recent past towards the solution of
the problem of the free oscillations of the Earth. The equations of motion for the torpidal and the spheroidal
oscillations of a spherically-symmetric, non-rotating, elastic, isotropic (SNREI) Earth model are given. These
equations can be expressed in the form AY/dr= A(r)Y, where Y is a (6 x 1) matrix in the case of the
spheroidal oscillations and a (2 X 1) matrix in the case of the toroidal oscillations. The effect of the rotation
of the Earth on its free oscillations and the method of calculating the dispersion of surface waves on a sphere

are briefly mentioned,

INTRODUCTION

The seismological data can be analysed and interpreted
mm terms of three basic concepts. The first is based on
the geometrical ray theory of optics. Most of our
knowledge zbout the interior of the Earth has come
from the application of the ray-theoretic methods to
seismological data, Ray theory is useful for periods
shorter than a minute. Travel-times of seismic phases
constitute an important component of the ray theory
concept.

The second concept is that of surface waves. The
study of the dispersion of surface waves helps us in
determining the regional structure, e.g. low-velocity
zones, oil-bearing structures, etc. The susface wave
theory is useful in the period range 10-300 s.

The third concept is that of the normal-mode theory
or free oscillations of the Earth. In here, the Deld 1s
viewed as a sum of standing waves instead of travelling
waves. The standing waves can be seen as peaks in the
power spectrum (squared-amplitude spectrum) of a
serismogram. Theoretical seismograms can now be
compuled for spherically-symmetric, non-rotating,
elastic, 1sotropic (SNREI) Earth models by mode-
summation techniques at low frequencies. At high
frequencies, the number of modes required to represent
the lield becomes so large that the mode-summation
technique is not practicable.

The problem of the osciflutions of an efastic sphere 1s
an old one. It atiracted many classical physicists of the
hast century, including S, D. Powsson, Lord Kelvin, G, 1L
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Darwin, and H. Lamb. In a classic paper, Lamb!
discussed the various modes of oscillations of a uniform
elastic sphere and calculated the important roots of the
frequency equation. He classified the oscillations of a
sphere as of the *first ciass’ and the ‘second class’. In an
oscillation of the first class, the dilatation and the radial
component of the displacement vanish everywhere so
that there 1s no change of shape. In the case of the
osciltations of the second class, the radiai component of
the vorticity vanishes. The oscillations of the first class
are now known as toroidal or torsional oscillations and
the oscillations of the second class as spheroidal or
poloidal osculations.

The Earth differs from a homogeneous elastic sphere
in two important respects: self~gravitation and radial
heterogeneity. Gravity does not affect the toroidal
oscillations because these are divergence-free and have
no radial component of the displacement, so that the
density distribution remains unchanged. But gravity
plays an important role in the case of the spheroidal
oscillations. Bromwich? investigated the effect of self-
gravitation, simplilying his work by dealing only with
an incompressible sphere. Love® showed that a self-
gravitating sphere of the size and mass of the Eacth and
of rigidity that of steel has a free period of oscillation of
almost exactly one hour for the mode S, (the
fundamental mode of the spheroidal oscillation of the
second order). Obviously, if this mode were to be
observed, instruments would be peeded that had
sensitivity at pertods very much longer than the pertods
of sctsmic motion then being routinely recorded,
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Hupgo Bemiofl was able to record a ground motion of
57 min perniod for the Karmchatka earthquake of 4
November 1952 on his strain-meter. Beniolf* attributed
it to the mode .S, of the oscillations of the Earth. This
was the [irst time that the natural oscillations of the
whole Earth had been observed. It was but natural that
several seismologists started investigating the problem
of the free oscillations of the Earth theoretically and
calculating the periods of the normal modes of real
Earth models. Jobert® applied Rayleigh's principle in
calculating the period for the mode 4T, as 43.54 min for
the Bullen B model of the Earth. In the following year,
Jobert® applied the same method in obtaining the
period for the mode S, as about 53 min, Pekeris and
Ja._rosch” applied variational methods 1n calculating the
period of the mode (S, as 53 min. Soon after Alterman
et al.® integrated the equations of motion numerically
and calculated the periods of varnous normal modes of
the Earth. In particular, they showsd that the period of
the mode ,S, should be 53.7 min for Bullen B model of
the Earth. A wide range of normal modes of the whole
Earth were observed by several seismological groups in
the U.S.A. for the great Chilean earthquake of 22 May
1960. The agreement between the observed periods and
the periods calculated by Alterman et al.® was excellent.
This was the beginning of a new branch of seismology-
the low frequency seismology. :

Observations of the 1960 Chilean earthquake
indicated that the mode .S, did not have a single
spectral peak, but, instead, was composed of at least
two lines with periods 53.1 and 547 minutes. Indeed,
Pekeris et al® and Backus and Gilbert'® showed
theoretically that for the mode ,3,, five spectral lines
exist if the rotation of the Earth i1s taken info account,
and calculated their periods.

The work of Alterman er al® and their con-
temporaries did not include the effects of lateral
heterogeneity, ellipticity, pre-stress, anisotropy and
anelasticily into account., During the last two decades
considerable progress has been made in the direction of
taking one or more of these features into account
(Dahlen!!~'4, Dahlen and Sailor’?, Luhl®, Mada-
riagal’, Smith!® Takeuchi and Saito'®, Woodhouse?®,
Woodhouse and Dahlen??). Other important papers on
the free osaillations of the Earth published in the recent
past include Ben-Menahem et al??, Dahlen and
Smith??, Derr?4, Gilbert?*?%, Gilbert and Dzie-
wonski?’, Gilbert and MacDonald?®, Landisman et
al.*®, Phinney and Burridge3®, Saito*!, Singh%, Singh
and Ben-Menahem33~*® and Wiggins*®.

EQUATIONS OF MOTION

The equations of motion of an SNREI Earth model
may be written in the form (Aki and Richards®’, Ben-

228

Menahem and Singh?®, Lapwood and Usami®*®)

divT+plgrad(¥ —gu )+e,gdivi 1+f = pu, (1)
ViW=4nGdiv(ipu), (2)
where

u = displacement vector,
i =22 u /o,
= divu +u(Vu +u V)
= stress tensor,
A, y=1amé constants,
g =acceleration due to gravity,
G = gravitational constant,
¥ = perturbation in the gravitational potential,
f =body force per unit volume,
p = density.

walf =

Equations (I} and (2) are to be solved subject to
suitable boundary conditions. Thus, u, e, 7, ¥ and
d¥/or —4nGpu, must be continuous everywhere, How-
ever, at a boundary between a solid and a fluid or
between two fluids, u, rather than u must be
continuous.

In the absence of external body force f, the motion
of the Earth consists of a superposition of free simple
harmonic oscillations of the form

ulr, = ;{7) explict).

Therefore, the equation which governs the free
oscillations of the Earth is obtained from equation (1)
by making the substitution d/0t—iw. This yields

Pu +pwtu =0, (3)

where & is a self-adjoint linear operator. Equations (2)
and (3) together with boundary conditions define an
eigenvalue problem. Every model of the Earth will
possess an infinite number of eigenfrequencies w,
(k=1,2,...), and a corresponding infimite number of
eigenfunctions u . (r ).

As mentioned in the Introduction, the oscillations of
the Earth are of two types—toroidal and spheroidal. At
high frequencies, the toroidal oscillations correspond to
the Love surface waves and SH body waves. Toroidal
eigenfunctions are of the form

u(r)=wil—e,xgrad Y., (4a)
where
Y.,= PT (cos &) exp (im ¢)

is a surface spherical harmonic. For every value of |
except zero, there is a fundamental toroidal mode 47,
and an infinite number of overtones T, (n=1, 2,...}.
There 1s no toroidal oscillation corresponding to {=0,
because the corresponding displacement is identically
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zero. Also, the mode 7, does not exist since it
corresponds to a rigid rotation. F rom equation (4a) it is
seen that, for toroidal oscillations, u,=div u-=0.:

At high frequencies, the spheroidal  oscillations
correspond to the Rayleigh surface waves and P-SV
body waves. The spheroidal eigenfunctions are of the
form

u@)=e,U@) You+ V() grad Y,,. (4b)

The spheroidal modes corresponding to I=0 are called
radial modes because their associated particle motion is
purely radial. For every value of I, there is a
fundamental spheroidal mode S5, and an infinite
number of overtones .S, (n=1, 2,....). For [=1, the
fundamental mode does not exist since it corresponds
to a rigid translation. From equation (4b), it can be
verified that (curl ¥),=0. On putting ¥ (F)=P(y) Y,
and using equations (4a, b}, equations (2) and (3) can be
transformed into a set of four ordinary differential
equations of the second order in U, V¥, W and P. One of
these is an equation in W alone and corresponds to the
toroidal oscillations. The remaining three equations are
coupled In U, ¥ and P, and correspond to the
spheroidal oscillations. These equations are awkward
for numerical integration, because one needs to
evaluate the derivatives of empirically - determined
quantities A {r), plr}, and p{r) in order to obtain the
coeflictents. This can be formally obviated by convert-
ing these equations into an equivalent set of eight linear
differential equations of -the first order which are free
from the derivatives of 4, u and p. Out of these eight
¢quations, two correspond to the toroidal oscillations
and the remaining six to the spheroidal oscillations. We
can thus express the equations governing the free
osciflations of an SNRE[ Earth model in the form

dY _

5 =AN Y (3)

where Y is an (N x 1} column matrix and A(r) is an
(N x N} square matrix. The number N depends upon
the kind of oscillations and the nature of the medium

{Table 1).

TABLE 1
Osaillations Medium Gravity N
Torodal S;lid -ND ellect 2
Spheratdal Salid Yes 6
Spheroidaf Liguid Yes 4
Spheroidal Solid No 4
Spheroidal Liquid No 2
Radral Sold Yes 2
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For toroidal oscillations, we have

d}’ _ Vi }’z
dr r T 7 (62)
dy — { 2 2 H’ o4 3
T (L:— );_E_PW 2 e ZY (6b)
where
LA=1(+1), =W, }’2=ﬁ(£{'—ﬂi"" "PE)
dr y

For spheroidal oscillations of a radially heterogeneous,
self-gravitating Earth model, the set of equations is

dy, 24 y2 AL

AN R “+ L
ar N TG T s (72)
dy, pg  Aue 44
Fa | _ —47 il
dr ( ﬁ o t — (5 )yl é‘r yz
L? 2u€ L*
+ T(ﬁy B )}’3 + — Ya=PYs» (7b)
_dii - ‘El‘. + ‘Y_:.’_ + 'l’i:_
dr r r  u (7c}
s _(pg _ 268 A
dr r  ore 5772
8 ]
+ —pw2+{(1+£/5)L2—2}£- Vs
2y -2 7d
;.le rysa ( ]
dys
. = 4nGpy,;t+ Ve, (7¢)
dy,s £ 2 2
‘CF"" "475_“015'.}’3 13’5 ""‘;J"ﬁ, (7)
where
d=A+2u e=31+2p,
dU L?

yi=Uy= 5"&;,";'_“0' l_‘

,
dV
dar |’

Ia the case of the liquid core, u=y,=0 and equation
(7d) yields

1 Yz
-2 8
V3 = (57}"1 p 15) (&)

Equations satisfied by y,, yi1, ¥'s, ¥ are obtained from

Ya=V, y,= ["(U V) +

_dpP
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equations (7a, b, ¢, ) on putting p=y,=0 and
substituting the above value of y,.

The equations {or the spheroidal oscillations of a
nongravitating Earth model can be obtained from
equations (7a, b, c, d) on putting g=ys=ys=0. Il we
further put u=3,=0 and y,= —y;/(prw?} obtained
from equation (8), we get the following equations for
the spheroidal oscillations of a non-gravitating liquid
core:

dyl___2*+ 1 L2
dr o J potr? Y2,

dy, 2
—_— = — gty "
ar Py,

In the case of the radial oscllations, ]=y,=0.
Equation (7) then yields
dye _ —2

— = —¥s

dr r

which integrates to y,=C/r’. In order to avoid the
infinity at the centre, we take C=0. Equations (7a, b, c,
e) now yield

dr or o’

dy, 7 pg  due 4u

— % = 4= 4+ - —V,,

dr ( i r oo )P T 5
=4

¥a l'y“

'%:4“6;}}'1

dr

Equation (5) subject to an appropriate set of
homogeneous boundary conditions (Ben-Menahem and
Singh>®) can be integrated by the Runge-Kutta method.
For a given SNREI Earth model A(r), u(r) and p(r) and
given [ there 1s a discrete set of values of w for which
the boundary conditions are satisfied. We denote this
set by , (eigenfrequencies) and the corresponding
displacements by u,. The eigenperiods are given by
T, =2n/w,. The index k signifies the normal-mode, Each
k stands for a triplet (I, m, n) of numbers; ! being the
colatitudinal mode number (I > 0), m the azimuthal
model number (—I<m< and »n the radial mode
number (2> 0). The numbers J/, m, n describe the
manner 18 which the displacement field depends upon
the colatitude, the azimuth, and the radial distance,
respectively. However, because of the spherical symme-
try, the eigenfrequencies are degenerate in m (i.e,, w, are
Independent of m). This degeneracy is removed when
the rotation of the Earth, its ellipticity or lateral
heterogeneity is taken into account.
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TasLe 2 Fundamental mode (n=0) eigenperiods, in seconds,
for the Jeffreys.-Buflen A’ model of the Earth,

Toroidal Spheroidal
! Calculated  Observed  Calculated  QObserved
2 2610 2579 1206 3232
3 1690 17Q7 2116 2134
4 1293 1306 1531 1546
5 1067 1076 1179 1189
6 G118 926 955 364

Table 2 compares the eigenperiods computed for the
Jeflreys-Bullen A’ Earth mode] (Ben-Menahem and
Singh??) with the observed periods.

EFFECT OF THE ROTATION OF THE EARTH

As mentioned earlier, the eigenfrequencies of a
spherically symmetric, non-rotating Earth model are
degenerate in the azimuthal order number m. The
introduction of the rotation removes this degeneracy.
The effect of the diurnal rotation of the Earth can be
calculated by carrying out a first-order perturbation
calculation. Let @ denote the uniform angular velocity
of the Earth about its centre, Assume that the observer
is referred to a noninertial frame, which, for all times,
maintains a state of uniform rotation with angular
velocity & Let (x,, X,, x3) be a Cartesian coordinate
system in this uniformly rotating frame of reference, let
the origin of the system coincide with the centre of the
Farth, and let e , be aligned along the axis of rotation,
so that 3=Q¢ ,.

The rotation of the Earth introduces two body forces.
One of them is the centrifugal force r sin@ Q2
perpendicular to and away from the axis of rotation.
The other force introduced by the rotation is the
Coriolis force, which, per unit mass, is equal to
QU xe,

Assurming /,w, « 1 (the highest value of Q/ w, ~1/27)
and carrying out a first order perturbation calculation,

.it can be shown that (Ben-Menahem and Singh?®)

W = tmtQ), —l<sm<g (9)

where

< = eigenfrequencies of a non-rotating Earth model,
~wp =¢1genfrequencies of the corresponding rotating

Earth model,
and the splitting parameter

1
ENTIEST (19)
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for toroidal oscillations, and

d
fRU+V) Vpridr
T = (11)
f{U*+ig+ 1) V3]pridr
0

for spheroidal oscillations.

Therefore, for both toroidal and spheraidal oscilla-
tions, the degenerate eigenfrequency ,w, is resolved by
a slow rotation of the Earth into (2 [+1) frequencies
7 (—!1 < m < 1) The set of (2 I+ 1) spectral lines for a
given (I, n) i3 called a mode multiplet and each member
of this set 1s called a singlet. For the toroidal
oscillations the splitting parameter [I(I+1)]"! does not
depend upon the Earth model. However, in the case of
the spheroidal oscillations, t depends upon the Earth
model. The splitting of the terrestrial spectral lines is
the elastodynamic analogy of the splitting of atomic
spectral lines by a magnetic field discovered by Zeeman
in 1896.

The ellipticity of the Earth also removes the
degeneracy giving (Dahlen!')

=0 [1+e(d+m?c)] (12)

to first order in ellipticity ¢, where b=b(n,i), c=c(n, ).
Thus the ellipticity splits the degenerate eigenfrequency
3y into ({+ 1) lines o (0 < m < ).

JEANS' FORMULA

The complete seismic field induced by a point source in
ann SNRE] Earth modcl can be expressed as an infinite
sum of normal modes. However, we know from
seismogram analysis that most of the recorded Earth
motion can be explained in terms of propagating waves.
Therefore, there must exist a relationship between these
two seemingly different aspects of seismic wave motion.

Consider 2 general term in the normal-mode solution
expressed by equations {4a, b). The factor of this term
which depends upon the time and the colatitude is
derivable from

PP {cos 0} exp (iw), (13)

where w=,0; 1s an eigenfreq.ency. Replacing the
Legendre function by its asymptotic approximation for
large values of {, this facter becomes

~ I Liz _ T mn
{—h (Em' sin(:?) l:exp{;[ wi—{+ l/2}9+3—- 7:”
+e:r.p{iiﬁmt+(l+l/2)ﬂ—%+m—;]}} (14)

The first-term describes a wave motion of frequency w
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diverging from the pole 8=0, whereas the second term
describes a wave motion diverging from the antipode
g=n.

In cylindrical coordinates, a wave diverging from the
axis may be expressed in the form

exp (i (wt—k A)], (15)

where k is the wave number. Putting A=af and
comparing (14) and (15), we get Jeans’ formula:

I+3=ka (I»1). (16)

This formuta tells us that, if { is large, every mode of
oscillation can be interpreted as a travelling wave
whose parameters are functions of [ and » and are given

by
=g£ C= ﬂ&} —_— 2Hﬂ
@ I+3’ f+1° (17)

where T is the period of the oscillation, ¢ is the phase
velocity, and 1 is the associated wave length. These
relations are found to yield a good approximation for
I > 7. The group velocity can be calcnlated from the
relation

dw dw dc
U —_— e —— — + R

In practice, the derivative with respect to ! is obtained
by finite differencing. Clearly, this formula is not valid
for smail values of /.

The phase velocity data calculated by means of the
Jeans’ formula for the period range 300-3000s can be
combined with the surface wave dispersion data at
shorter periods, and the entire spectrum can be used to
find the appropriate model of elastic properties of the
Earth.

SUKFACE WAVES ON A SPHERE

Surface waves are introduced for models with plane-
parallel boundaries. The real Earth differs from a
vertically heterogeneous half-space model in three
important respects: sphericity, gravity, and hyuid core.
The flat-Earth model gives a good approximation for
T < 50s. In the penod range 30s < T < 300s, a flat-Earth
model with suitable Earth-flattening approximation
serves our purpose*®*1:42 Propagating waves in the
period range 300-6"", are sometimes observed in
seismograms of » _or earthquakes. The corresponding
normal mod~ iave significant amphitudes not only in
the crust and mantle but in the core as well. Their
motion Is governed by the elastic restoring forces as
well as by gravitational forces. In the range 300s<T<
400s, the normal-mode amphitudes in the core become
neglhigibly small so that it is sufficient to carry out the
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TARLE 3
Core Gravity
Period(s) { Method inchuded included
T<50 1>200 Flat Earth No No
50< T <300 200> 1 >25 Earth-flattening No No
approximation
300 < T < 400 25> 1>17 Restricted normal mode No Yes
T>400 [<17 Complete normal mode Yes Yes

integralion from the base of the mantle, In this
restricted normal-mode method, we assume that all the
components of the displacement vector and the radial
stress vector vanish at the core-mantle boundary. The
ranges of applicability of the various methods are given

in

.

Table 3.
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