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It 1s interesting to note that even though approximate
(mixed symmetry contributions having been included),
this a;(a) 1s nevertheless consistent with the two
known exact results, i.e. a, (o) does not have contri-
bution of 0(«) and further af = a5 (a=1) = A3/36 = a5.

Concluding remarks

The partition function of a noninteracting anyon gas
still remains one of the most challenging, unsolved
problems in statistical mechanics mainly because of the
nontrivial braiding effects. Unless this problem is solved
we would not know 1if the realistic approximate
calculations are reliable or not. I hope I have been able
to convince you that the physical laws in “flatland’
could be even more complex, nontrivial and hence
interesting than in our real world!

A . il e ey Sy S, P —

1. For a summary of these two (out of print) books see the chapter
‘Flatland’ in The Unexpected Hanging and Other Mathematical
Diversions (ed. Gardner, M.), Simon and Schuster, 1969.

2. Dewdney, A. K., J. Recreat. Math., 1979, 12, 16; Two-Dimensional
Science and Technology, Dept of Computer Science University of
Ontano, Canada, 1979; for a short summary of the book sece
Gardner, M., Sci. Am., 1980, 243, 18.

3. Paul, S. K. and Khare, A., Phys. Lett., 1986, B174, 420; E 1986
B182, 415.

4. Lemnaas, J. M. and Myrheim, J., Nuovo Cimento, 1977, B37, 1.

. Khare, A., Centenary Commemorative Issue of Holkar Science

vy

Transfer functions related to zeroth
order modified Bessel equation

G. C. Purohit* and B. D. Indu

Crystal Impurity Division, Department of Physics, H. N. B. Garhwal
University, P. O. Box 21, Srinagar 246 174, India

*Depariment of Mathematics, Government Intermediate College,
Rudraprayag 246 171, India

We obtain the solution of the zeroth-order modified
Bessel equation with the help of double-point space-
dynamic Green’s functions. The expressions showing the
correspondence between transfer functions and Ber, Bet,
Ker, Kei functions are derived with the help of this
method. We discuss the application of the solution in the
case of the distribution of alternating currents in wires.

THe double-point transfer function known as Green's
function 1s the most powerful tool for solving
differential equations' 7%, Here we present the double-
point transfer function solution for the zeroth-order
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RESEARCH COMMUNICATIONS

modified Bessel equation
xD?y+Dy—ipixy=0, (1)

where D=(d/dx). The traditional solution of this
equation is given by> %,

y=Al,(px i)+ BKo(px /i), (2)

where the complex functions 1, (px \ﬂ ) and KN, (px \;’?)
can be expressed in terms of Bessel real. (Ber), Besscl
imaginary (Be1), Ker and Ket functions in the form

I,(px \/:T)= Ber (px)+ i Ber{px), (3a)
K,(px \/?)= Ker(px) +i Kel(px) (3b)

Let us consider that there is a vanishing force” which
governs equation (1) in the form

Diy+y7IDey—y=—foln 1) (4)

In this equation we have taken pxi=n and D, =d dxy.
The force f, (1, 1,) 18 known as sell-destroying force of
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¢ form
Jo(nno)=lim sin xt/x, (5a)
{— T
X-—+()
r B Y |
id
O0<lim 27 tsinxt <1, (5b)
3t
x -+
.

The formal Green’s function solution for the
uatipn (4) which 1s analogical to

(Di+n~'D, = 1)G(n,n0)= =3 (n,no), (6)
riven by!
y={fn.n0)G(n,no)dn. (7)

re 0(1,no) 15 the Dirac-delta function and G (i, )

Green’s function for zeroth-order modified Bessel
lation. To obtain the exact expression for G (7, 1,) we
ine the Fourier transform G (w) of it as

a0

Gnno)=0Cn)~" | G(w)exp [~iw(n—ny)]dw. (8)

- X
: substitution of equation (8) into equation (6) yields
Green’s function after the contour integration as

) =(n?~1)"Y26(n—ny) [cos n (1 — no)+
1sin n(n—no)] sin [((2—1)Y2(n—n)],  (9a)

L, Xo)=(m*—1)" V20 (x — x,) [cos np \/;(x—xc,)-i-

mp i (x—xo)sin [(n2~ 1) 7p /i (x—x0)]. (9b)
=Re G(x,x0)+i Im G(x, x,), (9¢)

re §(x—x,) is the Heaviside unit step function and

Re G(x,%g)=N, 0(x—xo) exp [— N, p(x —x)]
xsin [Ny p(x—x,)]

—exp[ —Nyp(x—x0)1sin [N, p(x=x0)],  (10a)

G(x,x9)=N, 0{x—x,) exp [*—sz(x*-*xo)]
{ —cos [N3p(x—x,)]
texp [ = Nyp(x—x0)] cos (N, p(x—x0)] }, (10b)

N,=14890941, N,=7.1348124, N, =11.5776953,
N,=18.712508 (10c)

use of equation (10) in equation (7) yields the
tion of zeroth-order modified Bessel equation in the

form

y(x,x0) = f(x,%0) Re G(x,x0) dx+if f(x,x,)
Im G (x, x,)dx

=A10(px\ﬁ]+BK0(px\/i_). (11)
Evidently, from equations (2), (3) and (11) we get

Ay Ber (px)+ 4, Ker (px)=[dx f(x, x,) Re G(x, x,),
(12a)
and

B, Bei (px)+ B, Kei (px)=| dx f(x, x,) Im G (x, x,).
(12b)

The values of real and imaginary Green's functions
for various values of (x—x,) and p are shown in
Table 1. It is evident from these data that the Green’s
functions (both real and imaginary parts) have their
values well below unity and fluctuate negatively and
positively, showing gradual damping. These solutions
are helpful in determination of the distribution of
alternating currents in wire of circular cross-section.

Let us consider that an a.c. generator is connected
with the metallic wire of length | and radius r. If we
neglect the fringing effects the current and the fields
(electric and magnetic) will have axial symmetry and
will vary only as functions of time and radius r. The
relations existing between the fields present are
expressible by Maxwell’s field equations in cylindrical
coordinates in the form

D,E#fcupH o (13)
and

r~!D,(rH)=(0+iwe) E, | (14

and ¢, u and ¢ are the permittivity, permeability and
electrical conductivity of the material respectively. If the
wire is a- good conductor of electricity, the electrical
conductivity o»we at even the highest attainable
frequency, which resorts the electric field equation (14)
in the form

D?E+r~!'D, E—iwucE=0. (15)

Equation (15) is similar to equation (1) with p?=wuc
and x=r. The electric field can easily be obtained from
equation (11) by appropriate substitution of p and r and
the driving force can be replaced by a.c. generator
V'=V,exp iwt. The magnetic field can then be obtained
from equation (13), which can yield the current density,
alternating currents and impedance per unit length Z
in the wires of circular cross-section from the relations
J=0Ek, I=2nrH, Z=E/I. For equations (13) and (14)
the propagation constant y2= —iwu(c +iwe) has real
part as attenuation factor and imaginary part as phase
constant, while equation (15) reveals the attenuation-
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Table 1. Real and imaginary parts of modified Bessel Green's function.
p=0.6 p=1.1 , :
(x—xg) + Re G(x,x,) ‘ITm G (x, x;) 'Re G (x, xg) Im G (x, xp)
0.2 +0.5195 E+00 —-0.3179 E+00 °  +0.2687 E+ 00 +0.1452 E+ 00
0.6 -0.2572 E~-01 +0.1113 E+00 —0.1448 E—-02 —0.1334 E-01
1.0 -0.1278 E—01 —0.1615 E-01 —0.4433 E—03 +0.3762 E-03
1.4 +0.3716 E—-02 +0.1959 E-04 +0.2426 E—04 +0.6752 E~05
1.8 -0.4216 E-03 +0.5214 E—03 —0.3474 E~06 —0.1034 E-05
2.2 -0.2595 E-04 —~0.1182 E-03 —0.2862 E—07 +0.3758 E—07
2.6 +0.1958 E—~04 +0.9665 E—05 +0.2043 E—08 +0.1132 E-Q9
3.0 —0.3568 E—05 +0.1669 E—05 —0.4558 E~-10 —0.7599 E—10
3.4 +0.1670 E~-06 ~0.6909 E—06 —-0.1617 E—11 +0.348] E—-11
3.8 +0.7853 E-07 +0.1014 E—06 +0.1641 E—12 —0.2661 E—13
4.2 ~0.2314 E-07 ' -0.3660 E—09 —0.4942 E—- 14 —0.5237 E—-14
4.6 +0.2660 E—08 —0.3219 E—08 —~0.6768 E—16  +0.3044 E—15
5.0 +0.1538 E—09 +0.7377 E—-09 +0.1256 E—16 —04971 E—-17
5.4 -0.1213 E~09 —0.6147 E-—-10 —0.4834 E—18 —0.3295 E—18
5.8 +0.2233 E—10 —0.1016 E—10 ~0.6654 E-22 +0.2534 E-19
6.2 -0.1086 E—11 +0.4292 E— 11 +0.9101 E-21 —0.6134 E—21
6.6 —04228 E—12 ~0.6367 E—12 ~0.4411 E—22 —0.1773 E—22
1.0 +0.1441 E—-12  +0.3797 E—14 +0.4362 E~—~24 +0.2012 E—23
1.4 —0.1678 E—13 . +0.1987 E—13 +0.6154 E—25 ~0.6454 E-25
7.8 ~0.9095 E-15 —0.4604 E— 14 —0.3809 E~-26 —0.6383 E—27
8.2 +0.7512 E—12 +0.3908 E— 15 +0.6968 E—28 . +0.1521 E~27
8.6 ~—0.1397 E—-15 +0.6181 E—16 +0.3760 E—29 —0.6194 E—29
9.0 +0.7041 E—17 —0.2666 E—16 ' —0.3134 E—-30 +0.1572 E—31
9.4 +0.2962 E—17 +0.3997 E~17 +0.8081 E—32 +0.1086 E— 31
10.0 —0.1524 E— 18 —0.3495 E— 18 +0.838¢ E—34 +0.8933 E—~34

free propagation because the propagation constant 1s
purely imaginary.
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Non-existence of Maxwell fields in
Bianchi type-V model in bimetric
relativity
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Restricting to a particular type of the background metric
it is observed that there is no contribution from Maxwell
ficlds to the Bianchi type-V model in bimetric theory of
gravitation,

To remove some of the unsatisfactory features of the
general theory of relativity, Rosen' proposed the
bimetric theory of relativity, in which there exist two
metric tensors at each point of space-time—y,;, which
describes gravitation, and the background metric y,;,
which enters into the ficld equations and nteracts with
g;; but does not interact directly with matter.
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Accordingly, at each space-time point, one has two line
clements

dxtdx’

J
do? =1y, dx'dx/,

ds® =g,

and

where ds 1s the nterval between two neighbouring
cvents as measured by a clock and a measuring rod.
The interval do 1s an abstract or geometrical quantity
not dircctly mcasurable. One can regard it as descnbing
the gecometry that exists if no matter were present.

This note concludes that the Bianchi type-V model of
bimetric theory of gravitation does not accommodate
clectromagnetic ficlds. This ference, however, does
differ from that of general relativity®,

The Bianchi type-V model s
ds? = e (dx?-d?) + e (e dy?+e¥dz?), (1)

where a, b, ¢ are functions of ¢ alone.
The background metric of flut space- time 1s
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