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development costs and easily place a mechanism that
has proven successful elsewhere, in place in a short

time.
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I discuss in some detail the quantum mechanics and
statistical mechanics of anyons which are objects in two
space dimensions obeying statistics which is interpolating
between Fermi-Dirac and Bose-Einstein statistics. In
particular I discuss the quantum spectrum of two and
three anyons experiencing harmonic oscillator potential.
Using these results I discuss the computation of the
second virial coefficient of an anyon gas. Approximate
results for the third virial coefficient are also given. Some
discussion is also given about the possible relevance of
anyons in condensed matter physics. Finally it.is pointed
out that the charged vortices in the abelian Higgs model
with the Chern-Simons term provide a concrete model
for charged anyons in relativistic field theory.
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statistical mechanics of

Many of us have wondered some time or other if one
can have nontrivial science and technology in two space
dimensions; but the general feeling is that two-space
dimensions do not offer enough scope for it. To my
knowledge this whole question was first addressed in
1884 by E. A. Abbot in his satirical novel Flatland. The
first serious book on this topic appeared in 1907
entitled An Episode of Flatland. In this book C. H.
Hinton' offered the first glimpses of the possible science
and technolegy in the flatland. In 1979 A. K. Dewdney?
published a 97-page book which contains in detail the
laws of physics, chemistry, astronomy and biology in
the flatland. However, all these people missed one
important case where physical laws are much more
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complex, nontrivial and hence interesting in the flatland
than in our three-dimensional world. I am referring to
the case of quantum statistics. In particular, in the last
14 years 1t has been realized that whereas in three and
higher space dimensions all particles must be bosors
or fermions (i.e. they must have spin of n#i or
(2n+1) f/2 with n=0,1,2,... and must obey Bose-
Einstein or Fermi—Dirac statistics respectively), in two
space dimensions the particles can have any fractional
spin and can satisfy any statistics which is interpolating
between Bose and Fermi statistics—hence the name
‘anyons’ for such particles. In other words, if we take
one anyon slowly around the other then the phase
acquired can in general be exp(if). If 6=0 or =«
(modulo 2n) then the particles are bosons or fermions
respectively while if 0 < ® < 7 then the particles are
termed as anyons. In this article I point out that the
charged vortex solutions® in the abelian Higegs model
with the Chern—-Simons term provide a concrete model
for charged anyons in relativistic field theory.

Why exotic spin and statistics in two dimensional?

It 1s not very difficult to understand as to why angular
momentum need not be quantized in two space
dimensions. The point 1s that spin in two dimensions
differs fundamentally from spin in higher dimensions.
This 1s because whereas the angular momentum algebra
1s noncommutative in three and higher space dimen-
S101S

[Jo J;1=2ie 050, ), k=1,2,3 (1)

it 1s a trivial commutative algebra in two space dimen-
sions since only one generator (say J,) is available. As
a result, there 1s no analogue of the quantization of
angular momentum, which arises in three and higher
dimensions from the nonlinearity of the commutation
relations associated with the nonabelian rotation group.
Thus the angular momentum of particle states need not
be nfi or (2n+1) #i/2 but could take any arbitrary
value. Now 1n relativistic quantum field theory, there is
a deep and fundamental connection between spin and
statistics. Particles with half-integral spin are fermions,
those with integer spin arc bosons. This immediately
suggests that 1in two space dimensions the particles may
exhibit exotic statistics. In one of the most rcmarkabile
and clearly written papers Leinaas and Myrheim?
showed that this expectation 1s indeed realized. The two
key arguments® in the proof are (i) indistinguishability
of 1identical particles in quantum mechanics, and
(1) Feynman’s path-integral approach to quantum
mechanics. The principle of indistinguishability of
identical particles 15 even older than quantum mecha-
nics. It was recognized by Gibbs long before and is in
fact at the root of his entropy paradox in classical
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statistical mechanics. The key point of the whole
discussion 1s that if the coordinate space of a one-
particle system is X (typically X is the d-dimensional
Euclidean space R?) then the true configuration space
of the N-particle system is not X ¥ but X V/S,, which is
obtained from X by dividing out by the action of the sy-
mmetric group Sy of N identical particles. In this way it.
was shown that if one anyon is slowly taken around the
other in anticlockwise direction then the phase acquired
is e'? while it is e~ if it is taken around in clockwise
direction with 0<O® <7 © being a continuous
parameter. Several conclusions follow from here. Some
of them are: (1) The anyons must necessarily violate
parity (P) and time reversal (T) symmetries (if @ # 0, n).
This 1s because the counterclockwise windings are
related to the clockwise winding by mirror reflection
(1.e. parnty). Stmilarly, if counterclockwise windings are
reversed in time, they will look like clockwise windings.
Thus P and T violation offers a unique test of theories
with anyons. For example, in the last few years there
have been suggestions® that anyons may provide
mechanism for high-T, superconductivity. If true then
the high-T_ materials must exhibit P and T violation.
While the experiments are inconclusive at this time’,
the general feeling i1s that anyons may not provide the
mechamsm for high-T. superconductivity; (i) Anyons
are sort of in between bosons and fermions, ie. the
repulsion between two anyons monotonically increases
as © goes from 0 to m with there being no repulsion
between two bosons. As a result one finds that the
trajectories of two anyons cannot cross each other and
one can 1n principle distinguish crossing ‘in front’ from
crossing ‘behind’. (ii1) The technical name for the group
structure of the paths for anyons is braid group—a
name which is both apt and picturesque! (iv) How does
one braid a third particle trajectory into the two? It can
be done 1n a trivial way or in a nontrivial way as shown
in Figure 1. Whereas in the first case one has the phase
factor of €@ in the second case the appropriate phase
factor is e¥®. This is bad news because it means that
unhike two bosons or two fermions, the phase due to
the exchange of two identical anyons in two dimensions
depends, 1n principle, on the position of all the

a b
/ / time
em | | - o e
/ / Space

Figure 1. The threc-anyon trajectories, () thicd “passive’ bystander

and (b) ‘uctive’ brawding which cannot be undone.
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particles. This fact make three- and multt-anyon
problems highlv nontrivial and that s why till today
these problems have stll remained essentially unsolved.

Possible relevance to the real world

Is our discussion merety of academic interest? The
answer to the question s no. It turns out that there are

many condensed matter systems that are essentially:

planer. The point is that in all these cuses the states of
the motton i the transverse direction are quantized, t.e.
1t takes a finite amount of energy to excite them. Thus if
we consider such systems at sufficiently low tempera-
ture so that the energy to excite them is not available
then the systems are essentially planer. Few such
examples are quantum Hall eflect, surface layer studies
and copper-oxide maternials. Of course, even then at the
most basic level the fundamental particles are certainly
required to be fermions or bosons. However, the most
direct and appropriate discussion of the low energy
behaviour of a material is usually in terms of quasi-
particles. One can hope that at least in some of these
cases the quasi-particles could be anyons. This hope has
in fact alreadv been realized in the case of the
fractionally quantized Hall effect. In this case the best
explanation offered so far is by Laughlin® and,
according to him, the quasi-particles responsible are
charged vortices, 1.e. charged anyons.

Another reason why I believe that anyons would
have relevance to the real world is because of the
unwritten hirst law of physics which states that
‘anything that 1s not forbidden is compulsory?” In a
sense anyons represent a challenge to all those people
who think that they know quantum mechanics and
“statistical mechanics and that they could have contri-
buted to the development of these two subjects in the
thirtees if only they had been born 50 years earlier!!

Models for anyons

There are two popular models of anyon depending on
if it 1s a point particle or an extended object. The first
model is due to Wilczek®. In this picture ode can look
upon anyon as a point particle with thin flux tube
attached at the site of each anyon. As a result anyons
carry both magnetic flux and electric charge i.e. they are
charged vortices. With this picturc one can look upon
anyon as boson (or fermion) with statistical interaction
given by the Lagrangian F = {0 /n)d¢/dt, where O
is the statistical parameter (0 < ® < 1) and ¢ is the
relative angle between two anyons. This can be easily
generalized to the case of »n anyons. Since this
Lagrangian is a total time derivative hence it does not

contribute to the equations of motion so that it is’

purely a quantum mechanical effect. This Lagrangian
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can be derived from the topological Chern-Simons
Lagrangian.

Anyons as charged vortices. In 1986 Samir Paul and
myself* at Bhubaneswar showed that the abelian Higgs
modcl with the Chern-Simons term in two space and
one time dimensions admit charged vortex solutions? of
finite energy, finite quantized flux, charge and angular
momentum which 1s, in general, fractional. It strongly
suggested that these objects could be charged anyons.
This was subsequently confirmed by Frohlich and
Marchenti!? using axiomatic quantum field theory.

Quantum mechanics of anyons

Now that the new quantum statistics is possibie in
flatland, a la the Bose and Fermi case, one would like
to study the properties of an i1deal gas of anyons. In
particular one would like to know the partition
function, the momentum distribution function, etc. of
an 1deal anyon gas. This would be a sort of bench-mark
study which 1s necessary so that in realistic calculations
one can have some idea about the validity of the
various approximations made. Unfortunately, it turns
out that only the two-anyon guantum-mechanical
problem 1s exactly solvable while three- and multi-
anyon problems are still unsolved, presumably because
of the nontrivial braiding: effects. As a result only the
second virial coefficient of an ideal anyon gas can be
computed.

Let me first discuss a few exact results about two-
anyon quantum mechanics and then discuss the latest
situation about the three- and multi-anyon problems.

The Lagrangian for two noninteracting anyons (i.e.
two bosons interacting via the statistical interaction) is
given by

.f’=%( +r2)+-i—e-—¢> (2)
The corresponding Hamiltonian can be separated into
the centre of mass and the relative Hamiltonians, In
particular one can show that

110
pr e +T)
H =+
rel U ﬂ?’z (33)
f
Where P¢—-g-r (f?‘{‘*—ng"“ (3b)

This Hamiltonian has only a continuous spectrum. To
see the effect of anyons we add harmonic oscillator
potential (V' (r)=(p/4) w* r?) between the two anyons. In
that case the Schrodinger equation can be exactly
solved and one can show that the bound state spectrum
is given by*
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where the radial quantum number n.=0,1,2,..., the
azimuthal quantum number m takes the values
m=0, +£2, +4, ..., while ® interpolates between 0 and
n (modulo 2 ) with © =0 corresponding to bosons and
®=nx to fermions. The spectrum E(®) has been
plotted in Figure 2 as a function of @ {rom where we
notice that the spectrum is in general not equispaced
unless @ =0, n or n/2 ie. unless the particles are
bosons, fermions or half-fermions (also known as
semions). This is a very important result because 1t means

that unlike fermions and bosons, the energy levels of

the noninteracting two-anyon system are not simply
related to that of a single anyon. That is why one is not
able to write down the n-anyon wave function in terms
of the single-particle wave function.

We have also studied!! the problem of the scattering
of charged anyons and we find that the Mott scattering
cross section between two anyons shows a marked
asymmetry between the forward and the backward
angles and further there is a dip in the differential cross
section. In the case of the attractive Coulomb problem
we show that the energy levels cross®>'' with all the
crossings occurring at the semion value of @ =n/2.

Let us now discuss the problem of three anyons 1n an

it ¥ (0,00

T3 2 2173 m

Figure 2. Two-anyon bound state spectrum in oscillator potential.
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oscillator potential. Till today this problem has
remained essentially unsolved. Wu'? was the first one
to attack this problem and he was able to obtain exact
eigenvalues and eigenfunctions of some of the states
that include the ground state of the three-bosons but
not the ground state of the three-fermions. In particular
he showed that the exact expression for the three-anyon
bound state (including the three-boson ground state)
energy is given by

E=(2+30) fiw. (5)

Note that whereas for a (= 0®/n)=0 this gives the
exact three-boson ground state, for =1 1t does not
correspond to the three-fermion ground state (which 1s
at 4 #id) but to that of an excited state. Thus whereas
Wu's exact eigenfunction corresponds to that of ground
state for o < a*, for a> o* it corresponds to that of excited
state. Recently, the three-anyon ground (as well as excited)
state energy has also been computed to 0(«) in
perturbation theory around the bosonic end'® and it
has been shown that it is identical with Wu’'s exact
expression'? as given by eq. (5). This means that the
perturbation theory breaks down beyond o = a*. What
is the value of a*? We have recently estimated a* by
computing the three-anyon ground state energy to
0(x?) in perturbation theory around the fermionic

~ end!* (note that the 0(x) correction is zero in this basis)

and it has been shown that
E={4+13(1-o)*] fio+ .... (6)

The two energies as given by egs. (5) and (6) are plotted
in Figure 3. Here the two curves cross each other at
x=0.7, thereby indicating that In case there ar¢ no
further crossings then o*=0.7, ie. the bosonic (fermionic)
perturbation theory, breaks down for a> a* (o <or*).
The fact that the three-anyon ground state energy 1s
not maximum for o = 1 (three-fermion) butis maximum

Boson Fermion
6w 6w
JJJ’

“"h“‘ f'

4w 4
e

2w 2

O 0.5 ® 4 |

Figure 3. Three-anyon ground state energy around the fermionic
and the bosonic basis.
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at x = 0.7 is somewhat surprising. This is because since
the repulsion between two anyons is maximum for
fermions (2 = 1) hence one would have naively expected

that the threc-anyon ground state energy should be
maximum at « = 1. I believe that this unexpected result
is because of the nontrivial braiding effect; a deeper
understanding is however still lacking.

Recently Wu's exact resuits for three-anyons have
been extended to n-anyons in oscillator potential and
exact eigenfunctions and eigenvalues have been written
down!® for some of the states. Besides, the low-lying
three-anyon spectrum has been numerically calcula-

ted e,

Statistical mechanics of anyons

We would ideally like to have an expression for the
partition function of a noninteracting anyon gas but
since three and higher anyon quantum mechanical
problems are still unsolved, hence the best that one can
do is to use the exact results for the two anyon problem
and calculate the second virial coefficient of a dilute

anyon gas.

Second virial coefficient. The equation of state for a
real gas expanded in powers of density p reads

N ]
PV=—(1+ + 2+..., =——,
( A, PV A3 P ) KT

p
where a, represents the nth vinal coefficient. For an
ideal Bose or Fermi gas in two dimensions 1t is well
known that (m=1,2,...)

(7)

2
B_ _ F._ ‘?ﬁﬁ = — 2
d; = a; = - T
2m
B _ _F _ B __ _F
aZm+2'—_a2m+2_'Oi Aym+1 = Aam+y 7 0. (8)

One can compute a, for anyons!’ by adding a
harmonic potential between the anyons so that the
spectrum 1s purely discrete and given by e¢q. (4). In
particular, a,(a, T) s then given by (note a=©/n).

a,(a, T)= ""’1%'[1'*"

Lim ] { 7(2) (a, w)“ziz) (o, 0) }]1 (9)

w—

where Z¥ (a, @)= Tre~F*: with &, being the two-
particle Hamiltonian. Using the spectrum as given by
eq. (4) one can then show that

al(a,ﬂ=ﬂ2%[1+2a2—4a] S (10)
pernodic
where the subscript indicates that we are to extend
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these results for {a| > 1 in a perniodic fashion. From eq.
{10) it is easily seen that a, (2, T) has cusps at Bose
values of = 2n. As expected at x =1 we get back the
exact second virial coefficient for fermions from here.
Instead of using harmonic confinement, one could also
have introduced a circular box of radius R so that the
spectrum 1s purely discrete and finally considered the
fimit R = co. One again obtains the same answer!®,

Can one extend this method and calculate a, and
higher virial coefficient of anyons? The answer is no
since we do not know the full three-anyon spectrum. In
the absence of the exact solution, one has to take
recourse to approximate methods. Using the three-
anyon spectrum to O(a) it has been shown!? that to
this order a;(®) (and even a,(a); n > 3) do not have
any cusps at Bose values of a=2n.

We have on the other hand used the semiclassical
approximation?® to calculate a;(a). The advantage of
this method 1s that 1t does not require a knowledge of
the quantum spectrum and 1s expected to yield accurate
resuits at high temperature. To test the accuracy of this
method we first calculated?* the second viricl coefficient
by using H_,, as given by eq. (2). Now the classical
partition function of the system is given by

00 an 2n o0
Zﬂm(a)=J~ drf dpr'[ d¢>J. dp,
0 - @ Q - o

2 ¥ o)
CXP[_ﬁ(%+£p¢:rza) ')], (11)

The quantum effect is unravelled by recognizing that
p,= fim and one replaces {dp, by #Zm, where
m=0,x2 x4, .... In this way we showed?! that the
semiclassical approximation reproduces the exact
(Qquantum) second virial coefficient for anyons. This is
quite remarkable but not that surprising if one recalls
the work of Comtet and Ouvry*? who have shown that
the second wvinal coefficient for anyons is related to
chiral anomaly and 1t i1s well known that the
semiclassical approximation is exact for the chiral
anomaly. Armed with this success, we then undertook’
the tedious job of estimating the third virial coefficient
for an anyon gas. Unfortunately we were -not able to

-isolate the fermion and boson contributions from the

mixed symmetry contributions. We therefore summed
over all possible values of the angular momenta. Very
accurate numerical calculations showed that the third
anyon effectively decouples (in the area) and does not
contribute directly to the interacting part of the parti-
tion function when the sum over the mixed symmetry
states 1S also included. From the calculations, we
obtained??

a3(a)=i‘}~[§%+4a2(l—la(}z]- (12)

CURRENT SCIENCE, VOL. 61, NO. 12, 25 DECEMBER 1991
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It 1s interesting to note that even though approximate
(mixed symmetry contributions having been included),
this a;(a) 1s nevertheless consistent with the two
known exact results, i.e. a, (o) does not have contri-
bution of 0(«) and further af = a5 (a=1) = A3/36 = a5.

Concluding remarks

The partition function of a noninteracting anyon gas
still remains one of the most challenging, unsolved
problems in statistical mechanics mainly because of the
nontrivial braiding effects. Unless this problem is solved
we would not know 1if the realistic approximate
calculations are reliable or not. I hope I have been able
to convince you that the physical laws in “flatland’
could be even more complex, nontrivial and hence
interesting than in our real world!
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We obtain the solution of the zeroth-order modified
Bessel equation with the help of double-point space-
dynamic Green’s functions. The expressions showing the
correspondence between transfer functions and Ber, Bet,
Ker, Kei functions are derived with the help of this
method. We discuss the application of the solution in the
case of the distribution of alternating currents in wires.

THe double-point transfer function known as Green's
function 1s the most powerful tool for solving
differential equations' 7%, Here we present the double-
point transfer function solution for the zeroth-order
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modified Bessel equation
xD?y+Dy—ipixy=0, (1)

where D=(d/dx). The traditional solution of this
equation is given by> %,

y=Al,(px i)+ BKo(px /i), (2)

where the complex functions 1, (px \ﬂ ) and KN, (px \;’?)
can be expressed in terms of Bessel real. (Ber), Besscl
imaginary (Be1), Ker and Ket functions in the form

I,(px \/:T)= Ber (px)+ i Ber{px), (3a)
K,(px \/?)= Ker(px) +i Kel(px) (3b)

Let us consider that there is a vanishing force” which
governs equation (1) in the form

Diy+y7IDey—y=—foln 1) (4)

In this equation we have taken pxi=n and D, =d dxy.
The force f, (1, 1,) 18 known as sell-destroying force of
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