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Lockmg In ﬁmte-element analy51s—from

superstition to science

G. Prathap

The finite-element method offers the most effective approach to computational (digital) simulation
of problems in engineering mechanics. However, very large errors are often encountered unless a set
of rules are followed. This article discusses one such scheme, identified recently. This is an example
of the epistemological conflict between the practical rules of finite-element modelling that can be
described as art and those paradigms that allow a sczentlf ic basis to be invested in it and whzch can

be admitted as science.

The principles of structural mechanics as a branch of
mathematical physics are well founded and have a
sound scientific basis. The analytical description of it
has also a long history and is rigorously based on
infinitesimal and vaniational calculus. Such descriptions
lead to partial differential equations that describe the
state of the basic variables defining the problem and,
more often than not, are tractable only for a very
limited range of structural loading and geometry. It has
become expedient in recent years to overcome these
limitations by turning to numerical modelling of the
behaviour of structural systems. The most powerful
method available to do this today 1s the finite-element
method. It 1s eminently suited to carrying cut the entire
cycle of design and analysis of a structural configur-
“ation on a digital computer. At the heart of this
procedure are the mechanics algorithms—the set of
subroutines that capture the physics of the structural
behaviour of the constituent parts of the structure in
terms of matrices of discrete numbers relating forces to
displacement at the nodes. It 1s therefore the discretized
representation of the continuum-analytical description
of structural behaviour that makes numerical computa-
tion possible.

All structural regions can be described by a set of
subdomains called finite elements. Each element is
designed in such a way that it captures the essential
elastomechanical behaviour of the region it represents,
replacing the differential equations of infinitesimal
calculus with a discrete relationship. This article deals
with one of the four principles that establish this
procedure:in a scientifically acceptable manner. The
four principles are continuity, completeness, consistency
and correctness. From this conceptual framework, |
show how consistency permits the locking problem to
be explained and resolved.

G. Prathap is in the National Ae¢ronautical Laboratory, Bangalore
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The main step in the finite-element method i1s a
procedure, called the discretization process, by which the
continuum structural behaviour is replaced by a
discretized description so that these can be coded as
mechanics algorithms. The early efforts to do this were
founded on engineering principles proceeding mostly
from heuristic judgement (art). However, considerable
critical and analytical studies In recent years have
shown that this approach can lead to inexplicably large
errors if applied blindly. Studies by me and my
colleagues have shown that it is possible~to establish
further rules that allow this aspect to be rationalized on
a more scientific basis.

Conventional finite-element modelling

We can appreciate that finite-element modelling would
have some errors related to the fact that an exact
analytical description over a large structural region s
replaced by approximate polynomial functions over
small regions (elements), taking care to ensure that the
elements are connected correctly and smoothly to cover
the whole region. These errors are often studied in the
traditional way as truncation or discretization errors'.
In this measure, if a one-dimensional region, as 1n a
beam say, of length L, 1s divided into N equal
subregions of length [, and lincar polynomuial functions
are used as the interpolation functions, errors can be
expected to be of the order of (I/L)* or less. Thus, with
10 clements, onc should get errors of less than a few per
cent. While this was the case with a very large class of
problems in solid and structural mechanics, there soon
appcared instances where the errors were 1nexplicably
large, errors of 99% or more being typical of such cases.
It was clear that the conventional rules of completeness
(1.e. the basis of interpolation functions must cover the
terms that ensure strain-free rigid-body motion and
states of constant stran) and  continuity (1€, the
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variables are continuous across element boundaries and
within the element domain) were insufficient to form a
complete basis for the formulation of finite elements.
The linear shear flexible beam element is perhaps the
simplest and also the earliest example 1in which such
problems were identified. -1 shall therefore use this
example to illustrate the magnitude of errors possible
and the importance of the concept of field consistency

to resolve the impasse. -
The classical two-noded beam element with two

degrees of freedom at each node, transverse deflection
w, and slope dw/dx based on elementary beam theory is
very well known (see Figure 1). This requires cubic
interpolation functions and is the simplest element that
can be constructed for this theory. It soon appeared to
‘be very tempting to formulate a similar two-noded
beam element based on the shear flexible Timoshenko
beam theory, the attractive aspect about this being that
the two degrees of freedom at each node follow from a
transverse displacement w and a section rotation @
which are independent field variables. Such an element
can be based on simple linear interpolations. Such
formulations also make the finite-element modelling of
nonlinear problems very simple, extend the range of
applicabihity from thin beams to moderately thick
beams, and are very attractive from the point of view of
the general-purpose finite-element analysis packages as
the elements can now be defined in terms of the six
basic engineering degrees of freedom, namely the three
translations and the three rotations.

Early experiments with such an element proved to be
disastrous. With the advantage of hindsight, we can
now understand why no record of such an element
appeared until 1977, when a deceptively elementary
‘trick’, that of using a reduced integration of the shear
strain energy, produced a remarkably accurate element?.
The 1nitial response was to dismiss this as a ‘useful
trick’. Implicit in this was the assumption that reduced
integration introduced errors that compensated some-
how for the other constraining errors. These early
interpretations were based on an understanding in
terms of the rank and singularity of the matrices
corresponding to the penalty linked, ie. the shear
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Figure 1.
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a, Classical thin beam, and b, Timoshenko beam elements.

energy terms. These interpretations argued that the
exact integration of the shear energy terms introduced
too many constraints among the limited number of
variables (degrees of freedom) available per element and
that this was reflected in the very degraded ‘locking’
behaviour of the element.

Figure 2 shows a typical illustration of what one
means by the very poor behaviour of the original
unmodified element (FI, for field inconsistent) compared
to the dramatic improvement in efficiency obtained by
making it field-consistent (FC). It can be shown that
over the practical range in which the Timoshenko beam
theory 1s appropnate (i.e. say L/t=15 to L/t=1000), the
F1 models are virtually unpractical to use—needing as
many as 100(L/t) elements to achieve the same accuracy

‘as that obtained with 10 FC elements! *

I now trace the path that led to the identification of
the need of a new paradigm, i.e. a new way of looking
at the problem, so that these unexpected problems
arising when the conventional displacement-type for-
mulation of the Timoshenko beam is used can be
rationalized. I begin with a description of the
variational statement of the conventional displacement-
type problem. A stiffness matrix corresponding to this
leads to numerical problems that defy intuition. It
becomes clear then that the conventional paradigms are
insufficient to explain the nature of the difficulty. I then
proceed to identify the new condition and to verify that
this 1s an accurate scientific basis and not just a ‘trick’.

Exact

e FC

Number of elements

Figure 2. Convergence plot for tip deflection of a cantilever beam
under tip shear load for L/t = 100,000.
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The conventional formulation

The strain energy of a Timoshenko beam element of
length 2 can be written as the sum of its bending and
shear components as

[(AEIZXT# +1/2kGAyTy)dx, (1)
where .

H=0., (2a)

y=0—w._. | (2b)

In equations (2a) and (2b), w is the transverse
displacement and 6 the section rotation. E and G are
Young’s and shear moduli and k the shear correction
factor used in Timoshenko’s theory. I and A are the
moment of inertia and the area of cross-section.

Discretization — field-inconsistent element

Linear interpolations are chosen for the displacement
field variables. This ensures that the element is capable
of strain-free rigid-body motion and can recover a
constant state of strain (the completeness requirement)
and that the displacements are continuous within the
element and’ across the element boundaries (the
continuity requirement). The bending and shear strains
are then computed directly from these interpolations
using the strain gradient operators given in equations

(2a) and (2b). These are then introduced into the strain

energy computation in equation (1), and calculated in an
analytically - or numerically exact way. Of course, it
turns out that the element performs very badly—the
phenomenon known as shear locking—and gives wildly
oscillating shear forces along the length of the element.

The linear i1soparametric representation of the two
field variables w and 8 are based on the functions

N,=(1-¢)/2, (3a)
N,=(1+¢)/2, (3b)

where the dimensionless coordinate é=x/I varies from
—1 to +1 for an element of length 2/ The strain
energies in equation (1) are then directly computed, in
an analytically or numerically exact (a two-point Gauss
Legendre integration rule) way, using these interpolation
functions in the expressions for the strain fields.

For the beam element shown in Figure 1, for a length
21 the stiffness matrix can be split into two parts, a
bending-related part and a shear-related part®. This
element was carefully studied? and the first numerical
results reporting the locking effect obtained. 1 examine
this to see how the locking effect can be quantified.
Figure 3 shows a cantilever beam subjected to an end
load. Two cases were considered: a deep beam and a
thin beam. While the results for the deep beam were
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Figure 3. Cantilever beam subjected to end load.

reasonable, those for the thin beam were dramatically
in error. Table 1 shows the trend as the number of
elements was increased. A curious trend can be noticed:
the tip deflections obtained, which are several orders of
magnitude lower than the correct answer, are directly
related to the square of the number of elements used for
the 1dealization. In other words, the discretization
process has introduced an error so large that the
resulting answer has a stiffness related to the inverse of
N2, This is clearly unrelated to the physics of the
Timoshenko beam and also not the usual sort of
discretization error encountered in the finite-element
method.

It 1s also logical to argue that the érror in each
element must be related to the element length, and,
therefore, when a beam of overall length L is divided
into N equal-length elements, the additional stiffening
introduced in each element owing to shear locking is
proportional to % Further, numerical experiments?
showed that the locking stiffness progresses without
limit as the element depth ¢ decreases. Thus we have
now to look for a mechanism that can explain how this
spurious stiffness of (I/t)* can be accounted for by
considering the mathematics of the discretization
process.

The field-consistency paradigm

The above exercise makes it clear that the two
paradigms introduced so far, namely completeness and
continuity, which had for a long time been considered
to be necessary and sufficient conditions for describing
displacement interpolations, are really not enough.
There 1s cause for concern here; one needs, first, to
identify the class of problems where these two
paradigms are insufficient, and then look for a paradigm

Table 1. Normalized tip displacements for
the thin beam,

No. of clements Tip displacement

o mynlenpnls.

| 0200 x 19~ ¢
R D800 x [~
3 0.320 x {03
§ Q128 x 1073
16 0.512x 1073

m
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that can ‘scientifically’ explain the difliculties that
appear in lhe displacement-type lincar beam element.
The main body of work done by me and my colicagues
demonstrates that such difficulties occur in constrained-
media problems. I also propose a requirement for a
consistent interpolation of the constrained strain fields
as the necessary paradigm.

If we start with a linear isoparametric representation
of the two displacement field variables w and 8, as we
did in egquations (3) above, we can associate two
generalized displacement constants with each of ‘the
interpolations in the following manner:

w=qay+a,{(x/I). (4a)
g=b,+b,(x/1). (4b}

These generalized displacement constants can be related
to the field vanables obtaining i1n this element in a
discretized sense; thus, a;=w.  at x=0, by;=6 and
b,=0.. at x=0. This denotation would become useful
when we try to explain how the discretization process
can alter the infinitesimal description of the problem if
the strain fields are not consistently defined.

If the strain fields are now derived from the
displacement fields given in equations (4a) and (4b) (call
these the kinematically derived strain fields as they are
derived by using the strain-gradient operators on the
kinematicaily admissible displacement mterpo]atlons)
we get

A= (blﬂ)! ‘ (5&)
y={bo—a,/I}+ b (x/l). (5b)

An exact evaluation of the strain energies for an
element of length 2/ will now yield the bending- and
shear-strain energy as -

Us=1/2(ED)(21) [(5,/DY, - (6a)

Us=1/2(kGAY2D[ (by—a, /)* + 1/3b2]. (6b)

It 15 possible from this to see that in the constraining
physical limit of a very thin beam modelled by elements
of length 2! and depth t, the sheas-strain energy in
equation (6b) must vanish. An examination of the
condition produced by this requirement shows that the
following constraints would emerge in such a limit:

bg — /I_}O, - (73)
b, —0. (7b)

In our mpew terminology, constraint (7a) is field-
consistent as it contains constants from both the
contributing displacement interpolations relevant to the
description of the shear-strain field. These constraints
can then accommodate the true Kirchhoff constiraints
In a physically meaningful way, i.e., in an infinitesimal
sense, this is equal to the condition (8—w._)—0 at the
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clement centroid. In direct contrast, constraint (7b)
contains only a term from the section rotation 4. A
constraint imposed on this will lead to an undesired
restriction on 0. In an infinitesimal sense, this is equal
to the condition ¢.,—0 at the element centroid (i.e. no
bending ts allowed to develop in the element region).
This is the ‘spurious constraint’ that leads to shear
locking and violent disturbances in the shear force
prediction over the element, as we shall see presently.

A ‘falsifiable’ error model

It is now necessary to establish the scientific quality of
the field-consistency paradigm that I have introduced
here. For this, I borrow an idea from the philosophy of
science, the falsifiability theorem of Karl Popper*. The
idea here is that the discretized finite-element model
will contain an error which can be recognized when
digital computations made with these elements are
compared with analytical solutions where available. I
have offered the consistency requirement as the missing
paradigm for the formulation of the constrained-media
problems. Therefore, to establish the scientific validity
of this conceptual scheme, 1t 1s necessary to devise
auxtliary procedures that will trace the errors due to an
inconsistent representation of the constrained strain
field and obtain precise a priori measures for these, and
then show by actual numerical experiments with the
original elements that the errors are as projected by
these a priort error models. This exercise, which will
complete the scientific validation of the consistency
paradigm, is made possible by a procedure called the

- functional reconstitution technique.

Functional reconstitution

We try to set up an error model for the error due to the
spurious shear constraint when the inconsistent element
1s used to model a beam of length L and depth t. The
strain energy for such a beam can be set up as

[1= j ) [1/2E102+1/2kG A(0 ~ w.,)*] dx. (8)

If an element of length 2! is isolated, the discret-
1zation process produces an energy for the element of
the form given in equation (6). In this equation, the
constants introduced owing to the discretization
process can be replaced by the continuum (i.e. the
infinitesimal) description. Thus we note that, in each
element, the constants in equations (6a) and (6b) can be
traced to the constants in equations (4a) and {4b} and
can be replaced by the values of the field variations 8,
0.. and w., at the centroid of the element. Thus the
strain energy of deformation in an element is
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n.=1/2(EI){(2]) 92+ '1/2(1\-(;14)(21)(94- w..)?
+1/6(kGAI*)(02). (9)

Thus the constants in the discretized strain-energy
functional have been reconstituted into an equivalent
continuum or infinitesimal form. From this reconsti-
tuted functional, we can argue that an idealization of a

beam region of length 2/ into a linear displacement-type -

finite element would produce a modified strain-energy
density within that region of

7= 1/2(EI+kGAI*/3)(8..) + 1/2(kGA) O~ w..)>
(10)

This strain-energy density reflects the alteration of the
original physical system introduced by the presence of
the inconsistent term in the shear-strain field. Thus we
can postulate that a beam of length L modelled by
equal elements of length 2/ will have a reconstituted
functional '

Il= f L [1/2(EI +kGAI?/3)(0..)?
0
+1/2(kGA) (0 —w..)*] dx. (11)

We now understand that the discretized beam is stiffer
in bending (ie. its flexural rigidity) by the factor
kGAI*/3EI For a thin beam this can be very large, and
produces the additional stiffening effect. described as
shear locking in the literature.

\ g

Numerical experiments

Our auxiliary procedure (to distinguish it from the
actual finite-element procedure that yields the stiffness
matrix) now provides an instrument for critical self-
examination of the consistency paradigm. It indicates
that an exactly integrated or field-inconsistent finite-
element model tends to behave as a shear-flexible beam
with a much stiffened flexural rigidity I’. This can be
related to the original rigidity I of the system by
comparing the expressions in equations (8) and (11):

I'/1=1+kGAI?/3EI (12)

We must now show through a numerical experiment
that this estimate for the error, which has bcen
established entirely a priori, starting from the consis-
tency paradigm and introducing the functional recon-
sutution technique, anticipates very accurately the
behaviour of a field-inconsistent linearly interpolated
shear-flexible element 1n an actual digital computation,
Exact solutions are available for the static deflection 1
of a Timoshenko cantilever beam of length L. and depth
r under a vertical tip load. If W is the result from o
numerical experiment involving a finite-clement digital
computation using elements of length 2/, the addittonal
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stiffening can be described by the parameter

= W/IW, —1. (13)

cm

From equation (12), we already have an a priori predic-
tion for this factor:

e=1'/1-1=kGAI*3 EI. (14)

Figure 4 shows a variation of e with the structural
parameter that denotes the penalty multiplier in this
case, namely kGL?/Et* for the case presented in
Figure 3. The crosses indicate the additional stiffening
parameter obtained from the finite-element experiment
(equation (13)) and the solid line shows the variation
predicted by the error model (equation (14)).

We have therefore succeeded in investing a scientific
validity in the consistency .paradigm through this
exercises—note that the traditional procedures such as
counting constraint indices or computing the rank or
condition number of the stiffness matrices could offer
only a heuristic picture of how and why locking sets in.

The reduced-integration formulation

A magic formula to overcome the locking seen for the
linear beam element is the reduced-integration method?,
The bending component of the strain energy of a
Timoshenko beam element of length 2! shown in
equation (1) 1s integrated with a one-point Gaussian
rule as this 1s the minimum order of integration
required for exact evaluation of this strain energy.
However, a mathematically. exact evaluation of the
shear-strain energy will demand a two-point Gaussian
integration rule. It 1s this rule that resulted in a non-
stngular shear stiffness matrix that locked. With a one-

la- ' Equation (13) /
‘?-
4+ Equation (i4) /
6+ E:
5 .
Loge ‘|
LY
1
2 /4
Ir /

2
Log (kGf/Et )

Figure 4. brror norm ¢ as function of penulty multipher for
cantlever beam under tip shear foree.
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noint integration of the shear-strain energy component
the shear-related stiffness matrix changed to a singular
onc, as shown below. The performance of this element
was extremely good, showing no signs of locking at all.
I have proved® that reduced integration is effective
because it makes the shear strain field-consistent and
thereby removes locking completely.

A critique of the conventional wisdom

The conventional wisdom was to relate this singularity
to the improved performance seen above. The argument
proceeded thus. The functional of equation (1) becomes
constrained when kGAl*>»E]. This leads to finite-

element equations of the form
(K, +aK,)a+f=0, (15)

where a 1s the displacement vector and f the load
vector. K, 1s the unconstrained part of the stiffness
matrix (in this instance, that derived from the bending
energy) and K, the constrained part (here derived from
the shear energy). The penalty parameter a {(here, we
know this is kGAI?/EI) increases as the beam becomes
thinner, and 1t is argued that equation (15) degenerates

to
K23= ""i::“’fx*—lo, (16)

and a—0 unless the matrix K, is singular. In a
conventional displacement-type formulation of con-
strained-media elasticity (as in the exactly integrated or
field-inconsistent case), this singularity does nct arise
naturally. The reduced-integration strategy is therefore
viewed as an artifice that can bring about the required
singulanty so that, in the penalty limit, equation (15)
does not degenerate as seen above.

There are several weaknesses in this heuristically
appealing argument. The first is that there is no
certainty. that a violation of the variational theorems
has not taken place in this ‘trick’ of introducing
singulanty into the constrained matrix. Nor is there any
suggestion ansing from the argument that there is a
unique way 1n which singularity must be achieved.
Thirdly, there is no possibility of constructing a
numerical experiment that can ‘falsify’ (verify) this
paradigm and lead at the same time to a measure of
error of the kGAI*/EI type that the field-consistency
paradigm was seen to do. There are also instances
where exact integration (with a non-singular constrained
matrix) would not lead to locking (if by locking we
mean the increase of stiffness without limit as the
penalty parameter increases) as in the field-inconsistent
quadratic beam element. In this case, the argument
involving the degeneration of equation (15) to equation
(16) 1s no longer valid.

There are other closely related arguments that have
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found their way to the textbooks but are no more
scientifically vahid than the singularity argument. One
relates to the rank of the shear-stiffness matrix—that
this must not be too high. Reduced integration helps to
reduce this rank condition. Another very closely related
paradigm concerns the number of constraints contained
in the stiffness matrix, the so-called constraint counting
procedure, Reduced integration lowers the constraint
count as one can show quite easily that the number of
constraints is directly linked to the number of
integration points used to integrate the constrained
strain encrgy. Another argument that was prevailing
some time ago was that of relating locking to the
spectral condition number: exactly integrated stiffness
matrices always had a higher spectral condition number
and this was linked to the locking effect. Note that
these are all heuristic arguments, if not specious, more
in the nature of a myth or superstition than a
scientifically rigorous paradigm. Again, these are
conditions that reflect the symptoms of the problem
(locking 1s seen where there is a non-singular
constrained matnx, or where the rank is too high, etc))
and not really the cause of the problem. Only the
consistency paradigm traces the problem to the root
and then argues forward to a falsifiable error estimate.
To close this critique of the conventional wisdom, it
may be well to bring in a renowned theorem in the
philosophy of science, called Occam’s razor. Stated very
simply, it recommends that the simplest explanation (i.e.
the one making the least assumptions) is usually the
best. The field-consistency paradigm is the simplest as it
stipulates only one requirement, namely that the
constrained strain field must be consistently interpolated.
No further conditions are required, none on the
singularity, or rank or spectral condition number of
the stiffness matrix or the constraint-count index. Nor
does 1t require the degeneration of equation (15) to
equation (16) to explain why locking takes place.

Concluding remarks

The hnear beam element serves as an example to
demonstrate the principles involved in the finite-
element modelling of a constrained-media problem. I
have demonstrated that a conceptual framework that
includes a condition that specifies that the strain fields
to be constrained must satisfy a consistency criterion is
able to provide a complete scientific basis for the
problems encountered in conventional displacement-
type modelling. I have also shown that a correctness
criterion (which links the assumed strain variation of
the displacement-type formulation to the mixed vari-
attonal theorems) allows us to determine the consistent
strain field interpolation in a unique and mathemati-
cally satisfying manner. Work done over the last decade
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confirms that the consistency paradigm is valid for a
wide range of problems in structural mechanics, ﬂu1d
dynamics and thermoelasticity.

I. Walz, J. E., Fulton, R. E, Cyrus, N. J. and Eppink, R. T,, Accuracy of
Finite Element Approximations to Structural Problems, NASA TN-
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Computer aids in production engineering
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Solutions to several industrial production problems call for a systems approach involving integration
of computer-based techniques for performing material flow analysis with press tool design. Software
packages have been developed that perform the complex mathematical analyses required for
optimizing design and system parameters. Computational tools are thus key to competitive

production engineering.

Modern production engirieering environment requires
that a techneological system is primarily controlled by
means of extensive scientific inputs. The inputs are
provided by mathematical formulations, which tend to
be rather complex when in the field of solid mechanics.
Solutions to the mechanics problems often entail
making suitable approximations that will simplify the
mathematics. The advent of powerful modern digital
computers has dispensed with the need to accept
inexact solutions. Most accurate solutions can be
obtained using numerical treatments. Another feature is
that these techniques allow the development of software
packages in modular form. Still, the metal forming
industry has been frustrated by the fact that the
commercially available software packages are mostly
irrelevant to their needs, because the formulations,
though sound in fundamentals, often tend to ignore
certain critical engineering aspects of the problem that
are peculiar to the practitioner.

Whether it 1s forging, extrusion, rolling, deep
drawing, flow turning or any other metal {orming
operation, the flow of metal within the body 1s
responsible for bringing about permanent shape
changes. Metal flow is associated with displacements,
strains and stresses. Each of them is related to the other
by material constitutive equations, flow rule, associated
flow rule, displacement-strain relationships, etc.!™*
Apart from the deformation behaviour of the work
material, the machine tools (press, roling mill, etc.) and

N. Chandrasekaran, until recently at the Defence Metallurgical
Research Laboratory, Hyderabad 500 258, 1s now in the Department
of Mechanical Engineering, Karnataka Regional Engineering College,
Srinivasnagar P. Q., Surathkal.
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the tooling (die, punch, etc.) involved in the production
process significantly affect the overall system response.
Suffice 1t to state at this juncture that numerous
parameters representing the machine tool, production
tooling and work material play equally important roles.

This leads us to the crux of the problem. Tradition-
ally, academics and textbooks have treated metal flow
and tooling problems 1in isolation, as evidenced by the
published literature. The important corollary is that
one¢ can perform the metal flow (stress-distribution)
analysis, but cannot use the information to design the
tooling, or vice versa; 1in other words, that technology
lacks scientific input. One reason for this trend may be
the non-availability until recently of systems with
enormous computing power at the desk-top level.
Advancements in the field of computers have further
brought powerful graphics engines with the systems,
which facilitate problem definition.

It 1s generally accepted that no single software can
solve a wide range of practical problems. In this article
I describe the salient features of selected fundamental
software packages that were found to be useful in the
consultancy work performed by me for the American
Dow Chemical Co., the Canadian Cosma International,
Fabricated Steel Products Division of Indal Ltd, etc.
Since the methodology essentially uses a short-term
approach that derives benefit from long-term develop-
ment-work, 1 first bricfly discuss the motivating factors.

A parallel and a lesson

It may come as a great surprise to note that the
realization that the material manufacturer (the steel
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