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Fractals in atomic and molecular collisions

N. Sathyamurthy

—— S el

E—e

Fractal geometry describes many irregular forms in nature, such as geographical features, as well as
complex shapes that describe chemical, among other, phenomena. Fractal patterns occur in shapes
associated with atomic and molecular collision processes, including collinear reactive and
nonreactive and rotationally inelastic processes, molecule-surface collisions and interparticle

diffusion.

‘WHEN Krishna opened his mouth, mother Yasoda
looked inside and saw outer space spreading before her
in all directions, with all its stars and planets. She saw
the oceans.... And in the mudst of everything, Yasoda
also saw herself taking little Krishna on her lap’
Included in this ancient description' is the concept of
self-similarity, which has become identified with fra-
ctals? in recent times. Fractals are a mathematical tool
useful in describing irregular shapes. In addition to
having a self-similar pattern repeating itself endlessly, a
fractal set would have a scale-invariant property called
fractal dimension (Dg), which is bounded by the
topological (D;) and Euclidean (Dg) dimensions:
D. < Deg < De. While there are several -examples
of fractals cited in the literature perhaps the simpiest 1s the
Cantor set illustrated in Figure 1. If we consider the
length in A divided into three equal parts and the
middle one left out as in B, the logarithmic ratio of the
occupied to the total length 1s given by In2/In 3. Each
sublength can be further subdivided into three portions,
once again leaving the middle one out. Such a
subdivision can be carried out ad infinitum, but the

characteristic property
De=In2/In3=m2*/ln3?=---=1In2"/In3", (1)

where n 1s the generation number, remains the same,
Objects like ferns, cauliflower, roots (branching) and
Kondapally toys (these are wooden dolls; if you open
one, you find a smaller but identical-looking doll inside;
when you open that one you find yet another smaller
but identical-looking doll; and so on) are examples that
we come across 1n everyday life. Popular descriptions of
fractals are plenty in the literature (for example, see ref. 3).
Earlier in this journal, Chowdhury* discussed the
significance of fractals in the study of proteins. In this
article 1 illustrate the occurrence of fractals in atomic
and molecular collisions.

In any dynamical problem, the eoutput can be
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considered to be functionally dependent on the input.
Sometimes the dependence would be regular and
sometimes irregular. The former refers to the fact that
for a small change in the input there would be a
predictable change in the output, while in the latter case
a small change in the initial condition leads to an
unpredictable (but reproducible) dramatic change in the
final condition. The latter behaviour is also termed
chaotic® and is characterized by a positive value for the
Lyapunov characteristic exponent (LCE)

1=(1/N)In(AO/AI), (2)

where O and I represent the output and the input
respectively and N is the number of time steps used in
the dynamical evolution. It is worth emphasizing that
what we are referring to is deterministic chaos, as
opposed to complete randomness. Buried in this
disorder 1s an order that manifests itself in the form of
fractals when the dynamical outcome i1s viewed as a
function of some appropriate (input) control parameter.
As a matter of fact, the existence of fractals can be used
as a characteristic of chaos in scattering systems®.

Collinear inelastic collisions

One of the simplest collision problems we could
consider involves an atom (A) and a diatomic species
(BC) interacting with each other along a straight line.
The state of the diatomic species before and after the
collision could be characterized in terms of its
vibrational action—the classical analogue of the
quantum number——n, and n; respectively. At a fixed
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Figure 1. lllustration of a 2/3 Cantor set and its fractal dimension.
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relative transiational energy (E, ) between the reactants,
for a chosen initial separation between the atom and
the diatomic species the only variable remaining to be
specified for full characterization of the collision
problem is the initial vibrational phase ¢, of the
diatomic species. For a ‘direct collision, the depend-
ence of n; on ¢, is depicted schematically in Figure 2.
In the quasiclassical trajectory approach’, the
inelastic transition probability P, ,, is given by the
ratio of the number of tra]ectories lymg in the range
(n,—3) < n, < (n+ %) to the total number computed in
the range ¢, =0—2x In the semiclassical S-matrix
theory®, P, _,,, is computed in terms of (3n/d¢y); for the
jth statxonary or ‘root’ trajectories which connect the
states n, and n

P, ‘"‘=|227ziﬁ (6n/8¢,); Rexp(iti 10)3

where @, is the phase for the jth root trajectory. For a
variety of ‘real’ systems the dependence of n; on ¢, is
partly regular and partly irregular, as shown in Figure
3,a for collinear He+Hj; (n,=0) collisions at

=0.5eV on an ab initio surface. The trajectories in
the irregular region were used to be referred to as ‘chat-
tering’ and were shown to involve long-lived complexes;
in current parlance their behaviour would be described as
chaotic (see above).

While investigating the collinear collision of an
atom with a Morse oscillator through exponential
interaction, Gottdiener® showed that the chattering
region in neversus-¢, plots revealed additional struc-
tures on increased resolution along ¢, and that a
characteristic array of parabolas repeated itself end-
lessly. More recently, Noid et al.'® showed that, for the
interaction of a He atom with an [, molecule in a T-
shaped geometry, the action-angle plot contained an
irregular region revealing a self-similar pattern of
Yicicles’ repeating itself with additional fine combing
of the ¢, axis; they also showed that the ‘icicles’

Figure 2. Schematic representation of the my-versus-@, plot for a
collinear atom diatom system undergoing only ‘direct’ collmuns The
oot Irajectories corresponding 1o ag=0 and n;= | are indicated by
arrows,
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Figure 3. g, Action-angle plot oblained from 8000 trajeclories for
collingar He+Hj(n,=0) collinons on an gb imtio surface at
E, =0.5¢V. Resolution along the ¢ axis has been increused by a
factor of 10 for 1he irregular regions I and I in & and ¢ respectively.

constituted a fractal set with a Dy close to but less than
2.0 when viewed in a two-dimensional phase space.

We have also found!! that on increased resolution
along ¢, both chattering regions 1 and 11 in Figure 3,0
revealed additional parabolas, as shown in Figure 3,b
and ¢ It is amazing that even the ‘wiggles’ in the
parabolas are reproduced in the self-replication. In
conformity with the findings of earlier workers we have
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also found the trajectorics in the regular region to be
direct (short-lived) and those in the irregular region to
be indirect {long-lived) or involving multiple collisions.
As expected, LCE is negative for the former and
positive for the latter type of trajectorics.

Collinear reactive collisions

For systems in which the exchange reaction is possible,
the n{¢.) curve would normally consist of two parts,
the reactive (R} and the nonreactive (NR). The corres-
ponding state-to-state transition probabilities would be
computed from ®; and (dn/d¢,); for the root trajecto-
ries in the R and NR bands respectively. As early as 1971,
Rankin and Miller'? had shown that there were a conti-
nuous reactive band and a chattering region in which
the collisional outcome was nearly statistical. While inve-
sticating dynamical resonances in (H, H,) collisions, Stine
and Marcus'? showed: ‘between the reactive and the
nonreactive branch is a region in which the atoms
execute multiple collisions. Between two reactive and non-
reactive branches we have found that there is another
reactive-nonreactive branch, each branch containing
two stationary phase points. Between each of these 1s
still another branch and so on.” They found that while
the reaction probability P* computed from the zero-
order branch varied monotonically with E_, inclusion
of the contribution from the trajectories in the first- and
second-order branches resulted in a nearly quantitative
reproduction of the reactive scattering resonance, thus
establishing a one-to-one correspondence between
fractals and quantal resonances. There have been other
reports (see, for example, ref. 14) that confirm such a
correlation. In studies involving collinear (He, H))
collisions we have found!'' that the shoulders of the R
band réveal additional structures on expansion along
the ¢, axis, suggesting that an exact semiclassical
calculation® would include contributions from several
generations of ‘root’ trajectories. It 1s clear from
equation (3) that the resulting P* would have positive
as well as negative contributions from the different root
trajectories. Therefore one can anticipate that P* would
vary non-monotonically and that there could be
resonances. Indeed, our quantum calculations'> con-
firm such an expectation and show that the (He, H3)
collisions are rich in reactive scattering resonances.

Rotationally inelastic collisions

While investigating the rotationally inelastic rigid rotor
HF (J.=0)-L1 colhsions at zero impact parameter
(b=0} we had noticed!'® that the f{inal rotational
action J,—the classical equivalent of the rotational
quantum number—varied smoothly for certain ranges
of the relative orientation 0, between the atom and the
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diatomic molecule, and that it varied erratically for
certain other ranges of 0. An examination'’ of the
irregular region revealed additional structures with
increase in resolution along the 6. axis. Particularly
with a 10°-fold increase in resolution, the self-similar
pattern that repeated itself became apparent. This
would be called a statistical fractal in contrast to a
feactal like the Cantor set wherein the repetition 1s exa-
ct. The functional dependence of J; on 6. is reflected in
plots of collision time as well as the scattermg angle y
as a function of 8. To examine if the ‘fractals’ could be
‘observed In three dimensional collisions we varied b,
systematically and found that there were indeed regular
and irregular regions in J.(b,) and x(b,) plots. But it is
not clear whether these patterns would survive ¢, and b,
averaging and thus be amenable to observatlon
Polanyi and Wolf'® had observed a similar behaviour
in rotationally inelastic collisions between a rigid rotor
and a rigid surface and pointed out that the rotational
rainbows (which could be obsewed) would get

quenched as a conscquence.

Molecule—surface collisions

There has been considerable effort made in the last de-
cade or so to understand the dynamics of gas—surface
interactions to the same extent that has become possible
for the gas phase. For example, Gadzuk'® has investiga-
ted I,-W collisions and pointed out how under certain
conditions the trajectories were simple and under
certain other conditions quite complicated. To under-
stand the dynamics fully, we plotted n, versus ¢; for

I, (n.=0)1W collisions at E, =0.25¢V for a constrained
parallel approach of the d:atomlc molecule to the rigid
surface. The n(¢;) plot revealed®® additional structures
with increase in resolution along the d) axis for almost
the entire range (0-2 n) of ¢. possible, 1mp1ymg that the
scattering was mostly irregular. That means, for such
systems, the chances of observing the chaotic behaviour
experimentally are high.

For an H,~M model potential with a barrier of 1 eV
for dissociative chemisorption, we found?®' that there
were clear-cut D (dissociative) and N (non-dissociative)
bands, as illustrated in Figure 4,a. But a closer
examination revealed that the switch-over region
contained alternating D and N bands. It can be stated
in general that, whenever the dissociation probabifity is
nonzero but less than unity, there would be D and N
bands and the switch-over region would contain fractal
singularities. Duff and Truhlar®** had earlier pointed
out for collinear atom—diatom collisions that, whenever
the exchange channel was open and O < P*
< 1. there would be R and NR bands with a
chattering region in between. Pechukas and Pollak??
pointed out that in such a situation there would be
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Figure 4. a, Action-angle plot for H, (n;=0)-surface collisions on a
model potential-energy surface at E, =0.517 eV obtained from 200
trajectories. Results with a magnification of 2 x 102 and 2 x 10? along
the ¢. axis are illustrated in b and ¢ respectively. Dissociative
trajectories have been assigned an np value of — 1.

trajectories that would be trapped [orever—unable to
make up their mind to come out in either channel,
Indeed, we find that, in the case of molecule-surlace
collisions also, there are trapped trajectories n the
switch-over region.

Interparticle diffusion

To understand the dynamics of H diffusion in a lattice,

we have considered a modci** in which an H atom 1s°
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allowed to diffuse towards another H atom held
stationary at the centre of a four-fold symmetric
potential field with the four ‘hills’ corresponding to four
rigid lattice atoms. While most of the trajectories for
different initial conditions are simply reflected there are
a number of them that traverse through the ‘canal’ and .
a small fraction of them that undergo multiple
collisions and are long-lived. In addition to plotting the
scattering angle y and lifetime t as a function of the
impact parameter-Y, which revealed fractal patterns, we
have also plotted the position of the trajectories at
equal intervals of time in the (X, Y) space and found a
very interesting pattern, illustrated in Figure 5. There
are 1nteresting focusing and defocusing effects. In
addition to the aesthetically pleasing spiral patterns and
vortices, the figure shows that the configuration space is
not uniformly filled. The implications for interparticle-
diffusion observables remain to be understood.

Meaning of the fractal dimension

So far we have focused our attention on discerning
fractal patterns that could, in principle, be characterized
by a fractal dimension, a scale-invariant property
Unfortunately there does not seem to be any unique
definition of Dg (ref. 5). Often one computes the
capacity dimension D_, which is identical to the
Hausdorfl (or fractal) dimension for fractals like the
Cantor set. For scattering systems, D_ can be
computed by counting the number N, of square boxes
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Figure 5. Propagation of a fumily of trgectories corresponding ta
the motion of one M atom towards another, from nght to feft as
indicated by the arrow,
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of length ¢ actually visited by the trajectories as follows:

D_=hm [InN/In(l/¢)]. (4)

£-»(
A plot of In N, versus In(!/¢) yiclds a straight line with
a slope D_, for not-too-large and not-too-small values
of ¢ An altermative approach 1s to compute the
corrclation dimension D_, defined as

Dgp=lim  [In C(r)/Inr], (5)

where C{(r) i1s the correlation function giving the
average fraction of points lying within a radius r from a
point. If N is the total number of points and P(r) the
number of points with a separation not more than r,

C(r)= P(r)/N". (6)

For the He-HJ collisions discussed above, D_ and
D__ differ from each other: 1.68 £ 0.03 and 1.33 £ 0.02
respectively. The reason 1s that the former ignores the
vaniation 1n the density of points while the latter
includes them. There are other ways of computing
fractal dimension but I shall not go into all of them
here. I only wish to emphasize that what is important is
not the absolute value of Dg but the fact that it is not
an integer and is less than the Euclidean dimension. It
1s worth adding that it plays a role somewhat
analogous to that of the surprisal parameter in a
surprisal analysis?®> used in compacting large volumes
of state-to-state rate constant/cross-section data. Singh
and Chattaraj*® tried to refate the dynamics to the
structure by computing the ‘observables’ in a study of
scattering from a fractal lattice. But a clear picture of
the relation between structure and dynamics in this

context 1S yet to emerge.

Concluding remarks

Atomic and molecular collisions in general exhibit

regular as well as irregular scattering, the fraction of

each in the global behaviour being dependent on the
nature of the potential-energy surface, mass combina-
tion of the collision partners, energy conditions, etc. As a
matter of fact, two almost ‘identical-looking’ potential-
energy surfaces have been known to yield two different
dynamical behaviours: on one the scattering is
completely regular and on the other it is regular for a
range of ¢, and irregular for the remaining values of ¢,
(ref. 27). Since it has become possible recently to study
chemical events in the femtosecond time domain?8, it is
possible, in principle, to control the vibrational phase
for the reactants, which in turn means that we could
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choose between regular and irregular scattering, thus
paving the way to controlling chemical reactions.

l. Srimad Bhagaratam, X.8.39, transiated by Dasa, D., Back to
Godhead, Magazine of the Hare Krishna Movement, 1978, 13(5),

33.
Mandelbrot, B. B, The Fractal Geometry of Nature, Freeman,

San Francisco, 1982,

3. Jurgens, H., Peitgen, H. -O. and Saupe, D., Vigyan Sci. Am., 1990,
1(10), 44.

4. Chowdhury, D, Curr. Sci., 1990, 59, 89.

5. Baker, G. L. and Gollub, J. P, Chaotic Dynamics, Cambridge
University Press, Cambridge, 1990.

0. Jung, C. and Scholz, H. 1, J. Phys., 1987, A20, 3607.

7. Rafl, L. M. and Thompson, D. L., in Theory of Chemical Reaction
Dynamics (ed. Bacr, M.), CRC Press, Boca Raton, 1985, vol. 3, ch. 1.

8. Miller, W. H., Acc. Chem. Res., 1971, 4, 161; Adv. Chem. Phys.,
1974, 25, 69; 1975, 30, 77.

9. Gottdiener, L., Mol Phys., 1975, 29, 1585.

10. Noud, D. W, Gray, S. K. and Rice, 8. A,, J. Chem. Phys., 1986, 84,
2649,

11. Balasubramanian, V., Mishra, B. K., Bahel, A, Kumar, S. and
Sathyamurthy, N., J. Chem. Phys. 199}, 95

12, Rankin, C. C. and Miller, W. H., J. Chem. Phys., 1971, 55, 3150.

13. Sting, J. R. and Marcus, R. A, Chem. Phys. Lett., 1974, 29, 575.

4. Lagana, A., Hernandez, M. L. and Alavarino, J. M., Chem. Phys.
Letr, 1984, 106, 41. _ .

15. Joseph, T. and Sathyamurthy, N., J. Indian Chem. Soc., 1985, 62.
874; Sathyamurthy, N., Bacr, M. and Joseph, T., Chem. Phys.,
1987, 114, 73.

16. Raghavan, K., Sathyamurthy, N. and Garetz, B., Chem. Phys.,
1987, 113, 187.

17. Kumar, S. and Sathyamurthy, N., Chem. Phys. Lett., 1990, 178,

616.

18. Polanyy, J. C. and Wolf, R. J., Ber. Bunsenges. Phys. Chem., 1982,
8. 356. ;

19. Gadzuk, J. W., J. Chem. Phys., 1987, 86, 5196.

20. Balasubramanian, V., Sathyamurthy, N. and Gadzuk, J. W., Surf.
Sci.,, 1989, 221, 1.741.

21. Thareja, S. and Sathyamurthy, N., Surf Sci., 1990, 237, 266.

22. Dufl, J. W. and Truhlar, D. G., Chem. Phys., 1974, 4, 1.

23, Pechukas, P. and Pollak, E., J. Chem. Phys., 1977, 67, 5976.

24. Balasubramanian, V. and Sathyamurthy, N. (to be published).

25. Levine, R. D. and Bernstein, R. B., Moleculur Reaction Dynamics
and Chemical Reactivity, Oxford University Press, Oxford, 1987,
p. 260. .

26. Singh, H. and Chattaraj, P. K., Proc. Indiun Acad. Sci. (Chem.
Sci), 1987, 99, 47; Phys. Lett., 1988, A128, 355.

27. Sathyamurthy, N, Duff, J. W., Stroud, C. L. and Raff, L. M, J.
Chem. Phys., 1977, 67, 3563.

28. Zewall, A. H. and Bernstein, R. B., Chem. Engy. News, 1988, 66,
24; Mokhtari, A., Cong, P., Herek, J. L. and Zewail, A. H,,
Nature, 1990, 348, 225,

t-J

ACKNOWLEDGEMENT. It is a pleasure to place on record my
apprectation of Dr P. K. Chattara; for introducing me to the
wonderful world of fractals. I am grateful to Prof. S. Ramaseshan for
encouraging me to write this article. This study was supported in part
by a grant [rom the Council of Scientific and Industrial Research,
New Delhi, and in part by a grant from INDO-US subcommission. |

thank the Indian National Science Academy, New Delhi, for
fellowship during the years 1989-91.

CURRENT SCIENCE, VOL. 61, NO. 7, 10 OCTOBER 1991



