RESEARCH COMMUNICATION

. —

Implementation of the fast-Fourier-
transform algorithm on a parallel
processor

M. S. Ganagi and K. Neelakantan,

ANURAG Advanced Numerical Research and Analysis Group,
P. O. Kanchanbagh, Hyderabad 500 258, India

We describe an algorithm to implement the fast-Fourier-
transform (FFT) algorithm on a parallel computer. This
algorithm provides a balanced computation load to all

the processors in the system and involves fewer
communications compared to implementations described

earlier in the literature. We also present results for FFT
computations on data of various sizes and on different

numbers of processors.

Fourier transforms are widely used i1n scientific
calculations. When dealing with discrete time signals,
one uses the discrete Fourier transform’ (DFT), defined
as

N—1
X(k)=) x;exp(—j2nik/N,0<k<N-1, (1)
i=0

where =,/ — 1. This is often expressed as
N-1
X(k)y= Y x;w*, 0<k<N-—L1. (2)
i=0

One can see from eq. (1) that the computation of a
DFT over N samples in a nzive fashion involves O (N?)
complex computations. However, the fast-Fourier-
transform??2 (FFT) algorithm reduces this to
O (N log, N) complex computations.

Since the FFT algorithm is widely used 1n scientific
computations, there has been a lot of interest In

ppa'ralilh

adapting this for vector and parailel computers. The
FFT does not lend itself to efficient implementations on
vector machines®. However, the FFT algorithm can be
parallelized quite easily. OQur purpose, in this paper, is
to describe a parallel FFT algorithm for hypercube
architectures and its implementation on PACE (ref. 4),
the parallel processing system developed at ANURAG.

FFT algorithms are implemented for a sequence of 2%
(= N) points. We have parallelized the in-place, radix 2,
decimation-in-time algorithm®. A 2%point FFT algorithm
involves L stages of computations as shown in Figure |1
(which shows a 16-point FFT with four stages). In the
first stage of the computations, N/2 two-point DFTs are
computed (the traditional FFT ‘butterfly’ operations). At
the next stage, these two-point DFTs are combined to
form N/4 four-point DFTs. Next, the four-point DFTs
are combined to form eight-point DFTs, and so on.
The input sequence 1S taken in the ‘bit-reversed’ order
as required for a decimation-in-time algorithm.

To parallelize the FFT algorithm to run on P
processors (P=22, L> D) arranged on a D-dimensional
hypercube, the data are equally divided into N/P
segments. For each segment, the first, L— D stages of
the FFT are run independently on the P processors.
These L — D stages do not require any communication
between the processors. This results in N/P-point DFTs
in each of the P processors. Next, the P segments (N/P-
point DFTs) are to be combined. This requires D stages
of computations. These D stages require communica-
tion between the processors.

The straightforward implementation of the last, D
stages of the FFT on a parallel processor would involve
pairs of processors exchanging their entire data after
one member of each pair multiplies its data by w'. After
exchanging the data one processor calculates the sum

> X(0)
> X(1)
X(2)
> X(3)
o X(4)
X(O
o X(6
X(7
o X(8
X(9
X(10)
> X 11))
o X(12
(1) ot > p - X(13
X(7) ol oWt > \:*v’;:// ;ﬁ,/ .; %14)
x(15) w”;>\<';* g8 “ X(15)
Figure 1. Dota-flow diapram of 16-point, 1adix 2, in-place, deamation-in-fune 1 ' algorithin

CURREINT SCH NCE, VOL. 61, NO 2, 25 JULY 1y9

1035

RESEARCH COMMUNICATION

while the other calculates the difference. Thus half the
processors have to do more computations than the
other half and each processor has to communicate its
entire data to its partner at each stage”.

Qur tmplementation also involves pairs of processors
exchanging data, but, in each pair, one processor sends
the even-numbered data to its partner and recetves the
odd-numbered data from its partner. Next, each
processor of a pair computes the FFT butterily, 1e.
multiplies the appropriate data points by w', deter-
mines the sums and diflerences, and stores them in
consecutive locations. The data-flow diagrams for the
above scheme for a 16-point FFT on two and four
processors are shown in Figures 2 and 3 respectively;
the dashed lines separate the data assigned to various
processors. A communication 1s required every time the

Rl

bl

data-flow path (shown as solid lines) crosses the dashed
lines.

The processors on a D-dimensional hypercube can be
numbered uniquely by D binary bits. The numbering
usually follows the Gray-code sequence so that two
processors are connected if their binary representations
differ in only one bit. For the last, D stages of the
parallel FFT algorithm, the processors whose Gray-
code representations differ in the ith bit from the least
significant bit form pairs in the ith stage. The input to
the parallel algorithm is in the bit-reversed order but
output comes in an order where even-numbered data
are perfectly shuffled and distributed among the even-
numbered processors and odd-numbered data are
shuffled and distributed among the odd-numbered
ProCessors.

x(0) = : AN X(0)
SRS, gt}
Node O igg) N : 0:’:0 \ ,. %(38)
NI P SN i . X6,
§(14)wn | :ﬁ “" @ X(14)
;{5153) > \\0’ al w X ?1)
Node 1 x(3) | ,, .“ S X(5)
X(11) o0 s’/}’ T X(13)
x(7) e v« : XE?)
X(15) o0 egd e o X(15)

Figure 2, Data-flow diagram of 16-point, radix 2, in-place, decumation-in-time FFT

algorithm on one-dimensional hypercube

(5] . N §§8§

Node 0%)51 ™ ° ’ |)

4 o : - © X(2

L LS AN S A

Node 1 X(10) " " ¥ " > X(9)
x(6) v : ,‘ A s X(3)
X(14)w w? .'E 'G_X(ll)“
x(1) _ s 22N XX \-/Z X(?_Z)

Node 2§§§§ . 0 S SN X(G))

XN FT T DT Qi RN = X(14)

Y 3 3 > 2 - 0

e o TSI
X(15) ot S > X(15)

Figure 3. Data-flow diagram of 16-point, radix 2, mn-place, decimation-in-time FFT

algorithm on two-dimensiondl hypercube

106

CURRENT SCIENCE, VOL. 61, NO 2, 25 JULY 1991

RESEARCH COMMUNICATION

—e . i - Al ekl e

For the last D stages, the multipliers w' become
functions of the processor number and the stage
number. Since wPxwi=wP?7% one can easily find the
starting w” and common factor w* such that successive
multipliers would be w”, w™w*, w*w xw?°, and so on.

One point to be noted 1s that the usual algorithms
result in computation of the DFT in bit-reversed or
normal order depending on the sequence chosen for the
input data. In our case, however, the data come outin a
shuffled order. But this does not create any problem
because one can reorder the data while transmitting
them back to the host processor. However, one usually
calculates the DFT to perform some operations on the
transformed data (as in the computation of convolu-
tions etc.). Later, one needs to compute the inverse
transform.

The inverse transform generally follows the same

——

scheme as that used for the direct transform. In the case
of the inverse transform, one can start with the data in
the shuffled order, such as that obtained from the direct
transform. The first, D stages of the computations
involve using pairs of processors and exchanging data
between them. The remaining, L — D stages are done
independently in each processor. The algorithm is
shown in Figures 4 and 5 for 16-point inverse DFTs on
two and four processors respectively. For the first, D
stages, each processor computes the butterfly opera-
tions on consecutive data. One processor of each pair
sends the difference to 1ts partner while the other
processor sends the sum, as shown in Figures 4 and §.

We have implemented the above algorithm on
PACE-8, which has eight processors connected to a
host processor. The FFT computations were done for
various values of N on one, two, four and eight

§8§ e 1 »' X (a)§
w d J : ’ w“ 1 X
X(10) -* 0’0 X(12)
Node O X§4) — '@":“\ > x(R2)
N
OGS
() N ;
) o SIS > x{13)
Node. 1 ¥(5y . ‘.:”\ s x(3)
X Y% V X7y
X(15) o ~ ‘ £ % e x(15)

Figure 4. Data-flow diagram of 16-point, radix 2, in-place, decimation-in-time inverse
FFT algorithm on one-dimensional hypercube.

h
&

X(0)
X(8) 7 v
Node 0X 23 t . o
X0y N N y
X(1)
X(9) ¥
Node 1X 3; ’A v
X 113)3 N/
X(4
Node 24 123
ode X 6) a_
X(14 «°)
ey
Node BX IB)W:E
X(7) al
X 15)@;;,

|
|
3
|
|
/f??[xx?'x
P
m-ﬁ'—‘hmo
‘\/
;

Figure 5. Data-flow diagram of 16-point, radix 2, in-place, decimabionan-time inverse
FFT algorithm on two-dimensionul hypercube.

CURRENT SCIENCE, VOL. 61, NO. 2, 25 JULY 1991

)’

RESEARCH COMMUNICATION

Table 1. Performance of the FFT algonthm on sequential and parallel machines,

Two processors

Four processors Eight processors

Sequentisal — -
N Lime Time Speedup Time Speedup Time Speedup
1024 0251 0.137 [836 0075 3352 0042 5954
20448 0 545 0294 1851 0159 3430 0.087 6.235
4096 1175 0631 1 863 0339 3471 0184 6373
L1492 2.523 1.347 1.873 0.719 3 507 0 389 6485
16,384 5.391 2 867 i 881 13524 3.539 0819 6.577
3768 11.475 6079 1.888 3.217 3 567 1.725 6 652
63536 24.312 12 808 1900 6.772 3593 3625 6.713
131072 51 398 27.016 1.902 14.224 3613 7.591 6771
Table 2. Companison of predicted and observed speedups.
Two processors Four processors Eight processors

N Predicted Experimental Predicted Experimental Predicted Experimental
1024 1.815 1836 3.345 3.352 6.056 5954
2048 1 832 1851 3.375 3.430 6239 6.235
4096 1 846 1.863 3424 3471 6.378 6.373
8192 1 857 1.873 3465 3 507 6.489 6.4835
16,384 1.867 1 881 3.499 3.539 6 583 6.577
32768 1875 1 888 3.529 3.567 6663 6 652
65,536 1.882 1.900 3.555 3.593 6.736 6.713
131,072 1 889 1.9G2 3.579 31613 6.799 6.771

processors and the results are given in Table 1. The g = P (3)

times reported in Table 1 are for the actual FFT 2D, .+t N/2P)’

computation only and do not include the time taken for T 5t NL/P

. . . com
sending the data to the nodes and for retneving the i
results. The speedup for two nodes varies from 1.83 to where ¢t . is the startup time for a node-to-node

1.9 (depending on N), while for 8 nodes the spread is a
little more and ranges from 5.95 to 6.77. The lower
efficiency on eight nodes for smaller values of N 1is
expected and has been observed for other applications
as well®.

The time for initially sending the data from the host
to the nodes was approximately 12.83 us per point
(depending on N). The effective speedup (including the
time for distributing the data and collecting the results
from the nodes) was 5.03 for a 131,072-point FFT on 8
nodes.

It may be noted that the efficiency of parallehzation
of the FFT algorithm has been reported® to be around
75%. The efliciencies observed by us range from 91.8%
to 95% 1n the case of two processors and from 74% to
84.5% 1n the case of eight processors. The improved
efliciencies are due to the fact that, in our implemen-
tation, the communications have been reduced by a
factor of 2 and all the processors are equally loaded.

The speedup S of the parallel FFT algorithm for N
data points and on P number of processors is given by

108

communication, t_ , the time to communicate a real
number between the nodes, and r_,., the time taken for
floating-point computation.

In Table 2, the speedup predicted by eq. (3) and the
experimentally observed values are compared for
different datasizes and for different numbers of
processors. The theoretical speedup 1s computed by
using ¢, . = 180 usec, t..q= 6.4 usec, and . =4
usec. It may be seen from Table 2 that the results are in

good agreement with the predictions.

1. Rabiner, L. R. and Gold, B., Theory and Application of Digital
Stgnal Processtng, Prentice Hall of India, New Delhi, 1978.

2. Oppenheim, A. V. and Schafer, R. W., Digital Signal Processing,
Prentice Hall, New lJersey, 1973,

3. Ashworth, M. and Lyne, G., Parallel Computing, 1988, 6, 217.

4, Neelakantan, K., Ghosh, P. P, Ganagi, M. S, Athithan, G., Atre,
M. V. and Venkataraman, G, Curr. Sci., 1990, 59, 982.

5. Chamberiain, R. M, Parallel Computing, 1988, 6, 225.

6. Walton, S. R.: tn H)percube Multiprocessors 1987 {ed. Heath, M.
J.), SIAM, Phildelphia, 1987, p 530.

Received 30 May 1991; accepted 30 May 1991

CURRENT SCIENCE, VOL. 61, NO. 2, 25 JULY 199!

