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Newton’s Principia read 300 years later

V. I. Arnol'd and V. A. Vasil'ev
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Analysing Kepler’s law in two dimensions, Newton discovered an astonishingly modern topological
proof of the transcendence of Abelian integrals. Newton’s theorem was not really understood by
mathematicians at that time, since it was based on the topology of Riemann surfaces. Thus, it was
incomprehensible both for Newton’s contemporaries and for twentieth-century mathematicians who
were bred on set theory and the theory of functions of a real variable, and who were afraid of
multivalued functions. This article describes Newton's theorem and also some other new mathe-
matical theorems, partially (more or less explicitly) contained in the Principia and partially

suggested by Newton's text.

Newton’s theorem on the nonintegrability of ovals

An algebraic oval in the plane R* is part of a real
algebraic curve (ie. the zero set of a polynomial),
homeomorphic to a circle. An oval is called nonsingular
if 1t i1s C*-diffeomorphic to the circle.

An oval is called algebraically integrable 1f the area of
its segment is an algebraic function of the secant line
(ie. there exists a nontrivial polynomial F (V,a,b,c)
which vanishes if V is the area cut by the line
ax+by=c). An oval is locally algebraically integrable it
the area of its segments coincides with an algebraic
function in a neighbourhood of any line (but these
functions may be different for different lines).
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Figure 1.

Theorem 1. (Newton 1687, sce ref. 1, Lemma
XXVIIN. There exists no alyebraically integrable convex
nonsingular algebraic curve.

(There exist compact integrable algebraic curves, C” -
smooth at all their points but one, at which they have
any prescribed finite number of derivatives, sce
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ref. 2. y*=x?—x* is the Huygens lemniscate; see
Figure 2.)

Newton’s proof. Let us fix a point O inside the oval,
and a ray with the origin 0. Consider the function on
the oval (or, equivalently, on the space of all the rays
issuing from the origin), whose value at the pomnt A
equals the area of the sector bounded by the hxed ray,
the radius OA and the oval, see Figure 1. If the oval 1s
integrable, this function 1s algebraic: a sector consists of
the segment and a triangle, and the areas of both of
these depend algebraically on the point A: this follows
from the algebraicity and the integrability of the oval.
Let us move the point 4 along the oval. After any
complete cycle, the area of the sector increases by the
area bounded by the oval. In particular, for the same
point A this function has an infinite humber of values
which contradicts its algebraicity.

Moreover, the same reasoning proves the following
stronger statcment.

N
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Fipure 2.

Theorem 2. (see refs. 3, 4). There exists no locally
algebraically integrable nonsingular convex alyebraic
oval.

Does there exist any obstacle to applying the

Y



GENERAL ARTICLES

ipyeleslCe—

—

preceding argument to a singular oval, e g. to the curve
of Figure 2? Indeed, we have used the fact that the area
of a sector 1s an analytic function of the point A. In the
case of singular cumnves the area is, in general,
nonanaly tic: when A4 crosses the singular point, the area
function may jump from one local branch to another.

Lemima.  Let the area of the sector (POA on Figure 1)
in a C*-smooth algebraic convex oval be a locally
algebraic function of the point A. Then this function is
even globally alg>braic.

Proof. For a C*-smooth oval, the area of the sector,
considered as a function of the point 4, has an
asymptotic* expansion

I'=ag+at+a,t*+ ... (1)

near anv point. Indeed, Newton discovered that any
branch of an algebraic function has an asymptotic
Puiseux expansion

I'ICOI'*-CIII p+Cztzrp+ "t . pEZ+,

near any point (it follows from the method of the
‘Newton parallelogram’). But, if such an expansion for
the graph of the area contains a term with a noninteger
degree of t; then our oval will not be smooth. Tt will
also be nonsmooth if the expansions (1) for the two
branches of this graph at two sides of our point are
different.

However, a locally algebraic function, having an
expansion (1) at any point, i1s globally algebraic. Indeed,
in the opposite case there would exist a point on the
two sides of which the graph would coincide with two
different algebraic curves. Both curves having the same
expansion (1) now implies their order of tangency at
this point would be infinite. This contradicts Bézout’s
theorem (formulated by Newton in the same paragraph
of Principia). the number of (perhaps, confluent) inter-
section points of different irreducible algebraic curves 1s
majorized by the product of their degrees; this proves
the lemma.

Newton was led to his theorem by a particular case:
the position of a planet on the Kepler ellipse cannot
depend algebraically on the time (or on the area of the
sector, swept by the radi, which is proportional to the
time according to the two-dimensional Kepler law).
Newton also noted that the length of an arc of an oval,
cut by a line, cannot be an algebraic function of the
line.

Some of the above requirements on the oval may be
omitted. Newton himself does not require either
nonsinguldrity or convexity. He only indicates that the

*In fact, this series converges in the neighbourhood of the pomnt, €.
the arca function s analytic, but in the proof that follows we only use
the existence of an asymptolic serics.
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oval should not touch any conjugate branch connecting
it with infinity. {This requirement was added in 1713
and appears only in the second edition of the Principia.)
Huygens wrote in a letter to Leibniz (1691) that
Newton’s argument 1s wrong, because it may be applied
even to a triangle (which is, of course, integrable).
Leibniz had answered that a triangle may hardly be
considered as an oval. He suggested a more dangerous
counterexample—the Huygens lemniscate curve (descri-
bed in one of his preceding letters to Leibniz). The
lemniscate curve evidently satisfies Newton’s definition
of an oval but it is algebraically integrable*.

Leibniz also conjectured the transcendence of the
area of almost any segment, which a hine with rational
(or algebraic) coeflicients cuts from an oval, given by an
algebraic equation with rational coeflicients. For
instance, he conjectuted the transcendence of the area =
bounded by a circle of radius 1. The general problem of
[ eibniz contains Hilbert’s seventh problem, but, unlike
Hilbert’s problem, Leibniz’s problem seems to be still
unsolved.

The requirement of algebraicity of ovals m Theorem
1 is unnecessary, since a smooth integrable oval is
algebraic.

Indeed, let us consider the zero set of the area
function on the space of lines in R%. This set is a (semi)
algebraic curve C on the dual projective plane of the
plane where the initial oval lives. This initial oval is the
envelope of the lines belonging to the algebraic set C of
lines. Such an envelope (the dual curve of () 1s
algebraic.

The algebraicity of the dual curve K of an algebraic
curve C was evident to Newton. Indeed, the envelope 1s
the limit for h-0 of the curves K,, formed by the
intersections of the lines belonging to C, having the
angular coefficients t and ¢+ h. The degree of the curves
K, being independent of h, the limit curve K 1s
algebraic.

The independence of the degree on h follows from the
calculation of the degree of a resultant (that 1s, the very
calculation, which proves the ‘Bézout’ theorem, majori-
zing the number of intersection points of two curves of
degrees m and n by mn; this theorem is explcitly
formulated and used by Newton on the same page of
the Principia that we discuss here).

Newton’s theorem can be extended to nonconvex
curves, and also to multidimensional hypersurfaces. The
proofs are based on monodromy theory (or Picard-
Lefschetz theory), i.e. on the study of the ramification of
integrals along circles depending continuously on a
parameter (see refs. 5-10).

*Newton's argument proves the transcendence of the area function
for any oval, which is an mmmersed circle closed on its Riemann
surface and which bounds a non-zero area on the plane.
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Generalizations of Newton’s theorem to hyper-
surfaces in even-dimensional spaces

An ovaloid (a convex compact hypersurface) in R" 1s
called locally algebraically integrable, if the volume of
the segment cut off the ovaloild by a hyperplane,
coincides with an algebraic function near any fixed
hyperplane.

Theorem 3. (V. A. Vasil'ev, see ref. 8). For n even,
there does not exist any smooth convex locally
algebraically integrable ovaloid in R".

We can choose a linear function x in R", whose
restriction to the ovaloid has the nondegenerate
(Morse) minimum m and maximum M. Let us consider
a path, going around the interval mM on the
complexification on the axis x (Figure 3).

Figure 3.

Lemma [. The increment along the path of Figure 3
of the volume V(t) of the segment x<t (or of the
analytic continuation of this volume along the paths in
the neighbourhood of the interval mM in the complex
plane t) is twice as large as the volume bounded by the
ovaloid.

Theorem 3 follows immediately from this lemma,
which is based on the following fact.

Lemma 2. For n even, the analytic continuation of
the function V(¢) along the small circles centred at the
points m, M, equals correcspondingly the functions

— V), V(M= V(1)

In other words, the power series of the function } (1)
in the ncighbourhoods of the points m, Af contain only
hall-integer (but not integer!) degrees of t=m, M —1t.
Conjecture 1. For n even, there exist neither convex
nor nonconvex smooth locally algebraically integrabie
ovaloids in R”.

This is true for the usual ovals. The proof 1s similar
to that of Theorem 3. We choose a more comphicated
path in the complex line x; see Figure 4. This path turns
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Figure 4.

around the critical values of the restriction of x to the
oval, consecutively in the order of the corresponding
critical points on the oval. When ¢ returns to its initial
value along this path, the analytic continuation of the
area function increases by twice the area bounded by
the oval.

Conjecture 1'. A path with this property exists for
any even n.

Integrable ovaloids in odd-dimensional spaces

Unlike the even-dimensional spaces, the odd-dimen-
sional spaces contain algebraically integrable ovaloids.
A sphere in R’ is integrable (by a theorem of
Archimedes). The same holds for any ellipsoid 1n any
odd-dimensional space; see rel. 3.

Conjecture 2. Any 1rreducible smooth locally alge-

braically integrable ovaloid in R%**! is an ellipsoid.

Theorem 4. Almost all algebraic ovaloids of degree
d=23in R** k>1, are not algebraically integrable.

The smooth algebraically integrable irreducible ova-
loids of degrees =3 (if they do exist) are very special
algebraic surfaces. For instance, their tangent plancs at
their complex parabolic points should be tangent to the
(complexified) ovaloid along the curves of parabolic
points, and so on (scc rel. 8).

The proof of Theorem 4 depends on the ramification
propertics of the volume of the segment continued
analytically to the complex projective space of the
cutting hyperplanes. The analytic continuation of the
volume function along a path X, in the space of
hyperplanes is equal to the integral of the holomorphie
differential n-form dx along an n-chain y,. This chain is
bounded by the union of the complexified ovalowd
hypersurface and the hyperplane X,. The ramification
hypersurface consists of those plunes which are not
general  with  respect to the complexified ovalod
hypersurface. The ramification at the tangents at the
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generie prarabolic points of the complexthed ovaloid 1s
logarithmicial. Hence the continuation of the volume
function ts infinitelv multivalued. This tmplies Theorem 4.

The difference between the cases of even and odd n 1s
due to the n-dependent sign in the Picard--Lefschetz
formula. describing the ramification of the relative
homology class of the chain g, The same sign is res-
ponsible for the existence of a sharp back front of a
wuve tn three space dimensions (and for its absence in a
(wo-dimensional space). The existence of a sharp back
front makes it possible to communicate acoustically in
the spaces of odd dimensions (and makes it impossible
to communicate in even-dimensional spaces).

The relauon of Newton's theorem to the theory of
hvperbolic PDE's 1s deeper than 1t seems. The same
mathematical structure ts even more transparent in
another of Newton's creations—in his attraction theory.

Newton's theorem on the attraction by spheres and
hyperbolic surfaces

First we recall the foilowing results of Newton.

Theorem 5. (Ref. 1, Theorem XXX). If toward the
individual points of a spherical surface are directed forces
decreasing imersely proportional to the distances from
these points, then a particle inside this surface is not
artructed to any side.

Indeed. for any infinitely narrow cone with the wedge
at this particle the intersections of the sphere with the
opposite parts of the cone attracted the particle with
equal forces, since the areas of these ~tersections are
proportional to the squares of distances.

Figure 5.

Theorem 6. (Ref. 1, Theorem XXXI). “With the same
assumptions, I affirm that a particle outside a spherical
surfuce is attracted to the centre with the force inversely
proportional to its squared distance from the centre’.

Proof. A spherically symmetric noncompressible (of
divergence zero) vector field decreases inversely pro-
portional to the squared distance to the centre (since 1ts
lows through all the spheres are the same). The
attraction ficld of any particle s noncompressible.
Hence, the attraction field of any body 1s noncom-
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pressible outside this body. Thus, the attraction field of
any sphere 15 noncompressible outside the sphere. Being
obviously spherically symmetric, it coincides with the
attraction field of a particle in the centre.

These theorems together with the corresponding
prools hold in m-dimensional space, if the attraction
force 1s inversely proportional to the n—1-th power of
the distance.

Moreover, these theorems may be extended to the
case of any ellipsoid in R if the density of the
distribution of the matter on 1ts surface is inversely
proportional to the length of the gradient of the
quadratic form defining this ellipsoid in the corres-
ponding point. In this case, inside the ellipsoid the
attraction is absent, and outside 1t is constant on the
ellipsoids confocal with the initial one. {(ref. 11.)

Newton’s theorems on the attraction of ellipsoids
may be extended to hyperbolic surfaces of arbitrary
degree in R”.

DEFINITION

An algebraic hypersurface of degree d in R" 15 called
hyperbolic with respect to a pomnt x, If any real line
containing this point intersects the surface exactly d
times (possibly, at infinity). Such points x form the
hyperbolicity set of the surface. This set is a union of
some connected components of the complement to the
hypersurface (see ref. 12); such components are called
hyperbolicity domains.

For example, an ellipsoid has one hyperbolicity
domain, and a two-sheeted hyperboloid—two such
domains.

A smooth hyperbolic surface given by a polynomal
equation F =0 partitions R" into the components which
we shall call zones. Let us order them according to the
minimal number of intersections with the hypersurface
of a path connecting a point of a component with a
point of a fixed hyperbolicity domain. This hyperboli-
city domain will be called the zeroth zone.

The standard charge on the hyperbolic surface F=0
is defined by the form dx/dF (ie. as the limit of a
homogeneous charge between the surfaces F=0 and
F=¢ with density l/¢ and the signs equal to %1
depending on the panty of thc number of the
corresponding component of the surface).

Theorem 7. (see ref. 13). The standard charge on a
hvperbolic surface does not attract the points in the
hyperbolicity domuin. Moreover, the same holds for the
product of the siandard charge and a polynomial of
degree d—2 (where d is the degree of the surface).

For an elhipsoid d=2, hence only the standard
density 1s admissible, but for d=4 we have many
admissible densities.

CURRENT SCIENCE, VOL. 61, NO. 2, 25 JULY 1991
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If the degree of the polynomial-multiplier is m units
more than the critical value d —2, then the potential in
the hyperbolicity domain i1s a polynomial of degree at
most m; sece ref. 14.

The Newton-Coulomb potential (the attractive
power in R" is proportional to r' ") may be replaced
here by any Green’s function G in R"- {0}, which is
homogeneous of degree s —n (or, for s =n, proportional
to the logarithm on any ray) and satisfies the equation
G(—x)=(—1)°G(x) (s being a natural number). In this
case the critical degree d —2 1s replaced by d —s.

Theorem 8. (ref. 14). A G-potential of the charge,
which is the product of the standard one and of a
polynomial of degree d— s+ m, coincides with a polyno-
mial of degree < m in the hyperbolicity domain.

Is there any trace of the algebraicity of the potential
in the other domains? (The simplest example 1s the
logarithmic potential of a uniform circle in the outer
domain.)

Theorem 9. (ref. 15). In the k-th zone of a hyperbolic
curve of degree d in R?, any partial derivative of the
Newton potential of the standard charge coincides with a
sum of two ulgebraic functions, having at most C% values.
Moreover, the same holds for the partial derivatives of
order g+ 2—d of the potential of the charge which is the
product of the standard one and of a polynomial of degree
g.

For instance, for the circle all the derivatives of the
potential are single-valued functions so that our
majorization of the number of the values (C1)* =4 is
not attained. It 1s related with the fact that the
functions F and G are not in general position: the
singular lines of the function G=In|x| in C? are
asymptotic with respect to the equation of the circle. In
the case of a typical ellipse our majorization is the best
possible: the analytic continuations of the derivatives of
the potential are 4-valued functions.

The 1dea of the proof 1s very close to that for
Theorems 14 (although 1t provides the opposite
answer). Namely, for any point xeR*—{F =0}, con-
sider two complex lines {&f|x—¢|=0} (ie.
(x,— &P+ (x;~&,)*=0) and the interscction set of
these lines with the surface {F=0}<C2 This sct
consists of 2d points (possibly, infinitely distant). d
points on any line. If x belongs to the Ath zone¢ and 1s
‘generic’ (1.e. all these 2d intersection points are distinct
and finite), then the uth partial derivative (jul>q¢~d +r)
of the potential 1s given by the integral of a suistable
differential form along a chain which consists of 24
small standard circles necar some 2h of these inter-
section points—~k points on any {ine, The motion of the
point x 1n the complex domamm may only permute these
points and the corresponding circles,
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Magnetic field analogues of Newton’s and Ivory’s
theorems

In one other generalization of the theorems of Newton
and lIvory, the attracting ellipsoid 1s replaced by a
hyperboloid of an arbitrary signature. In this case, the
potential function 1s replaced by a differential form of a
suitable degree {(depending on the signature). Consider
for instance, the one-sheeted hyperboloid 1n three-
dimensional Euclidean space. It 1s fibred in a natural
way into two famihies of curves—the meridians and the
parallels, diffeomorphic correspondingly to the hines
and to the circles (these curves are the traces on the
hyperboloid of the family of the ellipsoids and of the
two-sheeted hyperboloids, confocal to it; they are also
called the elliptic coordinate curves). The family of
meridians may be extended to the family of elliptic
coordinate lines fibreing into the lines of the interior of
the hyperboloid. The family of parallels may be
extended to an analogous fibration of the exterior part
of the hyperboloid into the closed elliptic coordinate
lines. (See Figure 7)

Fipure 7.
Theorem 10. (ref. 16). There exists un electric current
along the meridiuns (alony the parallels) of  the
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hyperboloid. whose magnetic field ranishes in the interior
domain and is directed along the parallels in the exterior
one (ranishes in the exterior domain and is directed along
the meridians in the interior one).

In ref 17 this result i1s extended to the case of
hyperboloids of arbitrary signatures in spaces of
arbitrary dimensions.

It would be interesting to transfer these ‘magnetic’
gencrahizations of Newton's and Ivory's theorems to the
case of the “generalized hyperbolic® surfaces of higher
degree.

Duality between the attraction lawns

Consider a point moving on a plane under the action of
an attractive force directed toward the origin and
proportional to the ath degree of the distance from the
ongin. It turns out, that for any such attraction law
there exists a dual one; the orbits of the motion under
the dual force fields are related by a simple conformal
mapping. For instance, the universal attraction law and
Hooke's law are dual to each other. Let us introduce on
the plane a complex coordinate w.

Theorem 11. (refs. 4, 18). Any orbit of the motion of the
point w on the plane of complex numbers in a central
attraction field in which the force is proportional to «°, is
transformed into an orbit of the motion in a central field
proportional to z* by the map z=w?*, provided that

(a+3A+3)=4, a=(a+3)/2 (2)

The proof is an immediate calculation.(See Figure 8).
Theorem 11 is not formulated in the Principia. But 1t
was guessed thanks to Newton's formula for the angle

™

-5 e { I N | , "1/ Hooke a
e -
|
I () -1
' ‘,"
| 7
J s
_______ 37 Newton

b
™
b
“
- e g g Sk Sam el = S
L |
U

Figure 8.
94

between the consequent apocentres of an almost round
orbit.

Example. If a=1 (Hooke’s law) then formula (2) gives
A= —2 (the universal attraction law) and a=2. We get
Theorem 12 (Bohlin, see ref. 19). The transformation
w—-w* transforms an ellipse centred at the origin of the
complex plane into an ellipse having a focus at the origin.

Proof. The Zhukovsky function w=&+¢&7! trans-
forms a circle [{|=r>1 into 2 Hooke’s ellipse centred at
0 with foci+2. But w?=¢2+ &2+ 2—the squaring of w
translates the focus of the ellipse to the origin.

Remark 1. The motion of a free point (along a
straight line on the plane) may be considered as the
motion 1n the zero held of arbitrary degree. Applying
Theorem 11, we obtain special orbits of the motion in a
central field of an arbitrary degree A on the plane. These
orbits are obtained from the straight lines by the
mapping w—w?*, a=2/(A+3).

In the case of the universal attraction law these
special trajectories are parabolas (x=2). In the general
case, the equation of these generalized parabolic orbits
in the polar coordinates is ¥*=secad.

Remark 2. Newton had considered in the Principia

the values a=1, —1, —2, —3, —5. The values a= —1
and —35 are special for the duality law (2) as the self-
dual ones. For a= — 3§, the formula (2) gives a= — 1.

Corollary. The orbits of motions in a central field,
whose force 1s inversely proportional to the 5th degree
of the distance from the origin, are transformed by the
inverstons to the orbits of the same kind.

Example. The straight lines of motion in the zero
field which do not contain the origin are transformed
by the inversion into the circles containing the origin.
Hence the motion along a circle containing the
attracting poiht is possible in a field inversely
proportional to the 5th degree of the distance—this
corollary 1s also due to Newton'.

Theorem (General duality law).

Let w(z) be any conformal mapping. Then it sends the
orbits of the motion in the potential field with potential
U(z)=\|0w/éz|? to the orbits of the motion in the field with
potential V(w)= —10z/0w|°.

Proof.

same. |
(VAE-U)|dz|= JE [\J2(E'=V)idw], EE'=-1.

CURRENT SCIENCE, VOL. 61, NO. 2, 25 JULY 1991

The maupertuis mtegrals are essentially the
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Example 1. w=z" gives the preceding duality law
(a+3)(A+3)=4, a=(a+ 3)/2.

Example 2. w=e* provides U=e?Rez V= —1/|w|°
Hence the force field with a= —3 1s dual to the force
field with potential e** x|z|™.

Remark. A similar duality law holds in quantum
mechanics (R. Fauv, CRAc Sci Paris, 1938).
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Current trends in EPR spectroscopy

Hans van Willigen™

During the past decade the field of EPR spectroscopy
has seen a surge of activity reminiscent of the
developments in NMR in the sixties and seventies. One
sign of the vitality of this branch of spectroscopy is the
recent publication of a number of texts dealing with
modern instrumentation and novel applications® ~3. (The
reader 1s referred to these texts for further information
on the developments sketched in the following
paragraphs.) Another 1s the formation of an Interna-
tional EPR Society a few years ago. In the United
States the importance attached to this field of research,
especially its biochemical and biomedical applications,
1s evident from the existence of three EPR research
centres?.

Following the example set by NMR spectroscopists,
a major focus of research is the apphcation of pulsed
(or time-domain) EPR methods. For many years pulsed
EPR was the domain of+a small number of nvestiga-
tors with the expertise to build their own spectro-
meters®. Developments in the ficld of microwave
components and digital data acquisition instrumenta-
tion have considerably simplificd the task of construct-
ing sophisticated pulsed EPR machines, At the same
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time improvements in instrumentation have led to the
development of new applications. It 1s a sign of the
maturation of this field of research that a commercial
instrument has recently become available. This should
lead to a significant increase in the application of time-
domain EPR in the study of paramagnetic systems.

Probably the main area of application of pulsed EPR
is in electron spin echo (ESE) measurements of
hyperfine couplings between unpaired electrons and
nuclear spins. This has proven to be a powerful
technique to get Information on electronic and
geometric structure of paramagnclic species In amor-
phous materials. Particularly noteworthy are applica-
tions in the study of the structure of metalloproteins.
Time-domain EPR measurements also give information
on electron spin rclaxation times (7, T,). Pulsed EPR
mcasurements of relaxation times have been used I
detailed studies of molecular motion of free radicals in
solution. In the last few ycars a number of rescarch
groups have reported on the construction and apphca-
ttons of Fourier transform EPR spectrometers. Among
other things FT EPR can be used to study transient.
free radicals (vide infra). 2D FT EPR has been used to
study motional dynamics and the hinctics of electron
exchange.

Another arca of interest 18 the construction and
application of high-frequency continuous-wave {cw) and
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