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Spin—statistics connection
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The conncction between spin and statistics of particles and systems can be established on
topological arguments if the notion of charge conjugates and the usual properties of pair creation
and annihilation are assumed. On compact two-dimensional surfaces, there are new possibilities of

fractional non-abelian statistics'.

Massive particles or systems are known to have integer
or half odd integer spin values and are known to satisly
either Bose-Einstein or Fermi-Dirac statistics. Con-
sequently, two identical particles are described by a
wave function with

Ylxy, x)= 2 ¥(x, x)

where symmetric wave function is associated with
bosons and antisymmetric ones with fermions. Indeed,
for N identical particles this 1s generalized to

Ip(P(xl‘!xli‘“axn)]=(_ l)p'\&(xli xla---:xn)a

where p=0 for all permutations P{x,}, goes with
bosons and p=1 for odd permutation P{x,} for
fermions. It is a common knowledge that bosons have
their spin quantized in integer multiples of #, while
fermions occur with half odd integer multiples of # for
their spin. This two-way connection between spin and
statistics is the celebrated spin—statistics theorem?®.

More generally in a d-dimensional space, the spin of
the system is related to the little group, the group of
transformations that leaves the momentum of the
system invariant. We need, for describing them, the
representation of SO(d) and 1ts covering group spin (d).
For d> 3, they come in two varieties: tensorial
representations relevant for bosons and spinorial ones
for fermions. In two dimension, the group being SO(2),
isomorphic to U(1), we have a special feature that it
does not lead to quantization (of the angular
momentum). Indeed, the one dimensional representa-
tions of SO(2) are labelled by 6; 0 <8<2n. Hence
typically the wave function of a particle at rest at origin
1s given by

Y (r) ﬁf(r)e'u"‘; tan o= y/x.

To describe its statistics, let us consider two identical
particles at x; and x, at time t;, and again at t,.
Quantum mechanically, the relevant amplitude gets
contribution not only from the trajectories for which
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the particles originally at x,; winds up at x, but also
from those when it ends up at x, and 1its place is taken
up by the particle which started from x,. Clearly, the
two classes of trajectories cannot be continuously
deformed into one another. The exchange of the two
particles implies propagation to an equivalent point 1n
the configuration space of the two-particle system. Thus
the process traces a closed trajectory in the configura-
tion space. When the particles move in a plane, 1t is
possible to trace the trajectory, using the angle the
relative coordinate makes with, say x-axis, when they
move about each other. For every closed trajectory, this
angle a completes an integer multiple of n, of which the
odd integer values correspond to exchange of two
identical particles. The probability amplitude associated
with the process will be given by

P (:x) == el9m/n :

where a is the winding angle and € is parameter that
characterizes the state. In three or more dimensions,
there is no unigue o, since the relevant trajectory
cannot be described using a single angle, neither is the
there any O—parameter characterizing the relevant
representation.

For N identical particles, the wave function is 1n
general (when d > 3), some representation of the
permutation group Py. There are two one-dimensional
representations: (i) when all elements of Py are assigned
a value 1 corresponding to bosons and (i) even/fodd
elements assigned + 1, representing fermions. For d=2
case, we have a much richer group By (Artin’s braid
group) of which the one-dimensional representations
are characterized by a parameter 8, which interpolates
between bosons (8=0) and fermions (8= n). For any 0,
we have anyons3. The higher dimensional representa-
tions will have ‘non abelian statistics’ and 1t will be our
endeavour to look for spin-statistics connection in this
richer environment.

Topological interpretation of statistics

A classical system is specified by its configuration space
0, that has information about the positions, orienta-
tion, etc. of the constituent particles. Quantum
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mechanically, we have a related wave function ¥ (q);
geQ, which is a complex number. Y*y is the
probability density. Thus ¥ represents a map from Q
onto C'. If this is a system of N identical particles then
Y will be a one-dimensional representation of Py (in
d > 3)or By (in d=2).

We are interested in closed loops in the configuration
space, since they are related to transformations linking
equivalent configurations of the system. This is precisely
the information, we refer to as the statistics. A loop [,
in Q is said to be homotopic to I, if /; can be deformed
continuously to [,. All loops can be classified 1nto
different homotopic classes and they form a group. This
is known as the fundamental group 7, (Q) of the space
Q. For example, if Q=S?, n,(S')=2Z, set of integers that
physically signifies the winding numbers (anticlockwise
windings may be termed positive and clockwise
negative). If Q=S0O(3) then n, (SOQ3)=2Z,. If n,(Q) 1s
nontrivial, then we expect that each one-dimensional
representation will correspond to a different quantiza-
tion. This 1s natural, since, for every loop, the relevant
wave function obeys

lp ___L_’ elal)) \b :

and hence each representation of «(l) will define
distinct quantum realization. Q for N identical particles
1s clearly

—(RJ)N — A
Sy

where — A ensures that no two particles are at the same
site and Sy 1s the permutation group.

1, (Q)=Sy for d>2.

There are two one-dimensional representations of Sy.
The trivial one assigns 1 to every element and this
corresponds to the quantization when we treat the N
particles to be bosons. When we assign 1 to every even
permutation of Sy and —1 to odd permutations we
have fermionic quantization. When d=2, we have

nl(Q)= BH(Rz)r

the braid group on a plane. The group can be described
as follows. Take N particles 1n a row along the
horizontal direction, which may be taken as the x-axis
of the two-dimensional plane. Let y-axis be perpendicular
to the plane and vertically upwards 1s the time
evolution. The exchange between ith and (i+1)th
particle, ¢ will be represented as shown in Figure 1.

Notice that the particle in the ith position goes under
the other. Clearly o} #1, as can be pictorially scen in
Figure 2 through (no continuous deformation can take
I.LHS into RHS).
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Figure 1. ¢, exchanges ith and (i + 1)th particle.
ol # 1

Figure 2. [llustration of g?#1.

The group is defined through
0i0;i+10;= 0;4+10;0i+,.

If the elements o; are to be given by a one-dimensional
representation, the above relation implies that all ¢
are equal and let them be denoted by €', where 0 is
some parameter.

W(xy, Xp) = e W (X, X4).

While 8=0 corresponds to bosons, =7 to {ermions,
for a general 0, we have anyons. If d>2, necessarily
(since the third and other dimensions permit the needed
deformation) ¢f=1 and the only possibilities are =0
and 7.

Proof of spin—statistics connection

We shall now attempt to establish the spin-—statistics
connection, using topological arguments®. We will not
require the full apparatus of the relativistic field theory,
but only the feature that we have, aiong with the
particle states, corresponding charge conjugates-anti-
particles and the usual notion of pair creation and pair
annihilation. With the time arrow vertically upward, we
shall denote particles and antiparticles trajectory as

shown in Figure 3.
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Pair creation and annihilation occur when the
particle position x; and antiparticle position X,
coincides, i.e. x, =xX;. For a particle with spin, it 1s
necessary to associate with each particle a position and
a frame. Thus the configuration i1s denoted by (x, F);
position x € R? and the orientation of a frame F € SO(d),
an element of SO(d). When the particle traces a curve 1n
R4, the related antiparticles are described by (%, F)e
R¢ @ SO(d) the frames F having opposite orientation
with respect to particles. We denote particles with an
upward-directed arrow and left-side shading and
antiparticles through a downward-directed arrow and
right-side shading (Figure 4). Such a convention of
shading is necessary to realize pair creation and
annhilation of spinning particles.

Now we are ready to give a pictonial proof of spin—
statistics connection. Let us denote through o -an

exchange of two identical particles, as depicted In°’

Figure 6, which can be successively deformed to obtain
the sequence shown in Figure 7.

We thus notice that the exchange of the two particles
is homotopic to having one of the two particles effected
a 2r rotation. Naturally the statistics, depicted by the
exchange is intimately related to the action of the

Antiparticle

Figure 4. Notation for spinning particle, shading on one side depicts
the frame carried by the particle with spin.
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Figure 5. Pair creation and annihilation of particles with spin.
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Figure 6. Exchange of two identical particles with spin.
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Figure 7, Pictorial proof that exchange of two identical particles is
homotopic to one in which the frame of one of the two particles
ratates by 2n.

rotation, which characterizes its spin. This is valid for any
number of spatial dimensions d>2 and is easily
generalized to arbitrary number of identical particles.
Consequently, for d>2, symmetric (antisymmetric)
states or equivalently bosons (fermions), correspond to
tensorial (spinorial) representations of angular momen-
tum. For d=2, ¢ statistics goes with the spin (SO(2)
representations) characterized by e'.

Spin and statistics on compact two-dimensional
surfaces

It is interesting to consider particles/systems that can be
allowed on a compact two-dimensional manifolds. Let
us start with a sphere. The relevant representations for
N identical particles is that of By (S?), the braid group
for N particles on a sphere. The allowed one-
dimensional representations are given by €' but with
0=2rnn/N—~1); n<N-—1. The constraints on 8 are a
consequence of the fact that when one of the particles is
taken along a closed trajectory around the remaining
N —1 particles 1t picks up a phase €¥ D¢ and this is
necessarily a trivial closed trajectory (since the loop can
be collapsed to a point), with the result its phase 1s
e2nn Except 8=0, all other cases are N-dependent and
therefore cannot be true as the statistics of the spectes.
Thus only bosons are permitted on a sphere. The same
conclusion follows, when we add antiparticles, in each
particle number sector. This is unexpected, since we
know that explicit field theory models in 2+1
dimensions admit solitons with fractional spin and
statistics>. The puzzle is Tesolved when we recognize that
such solutions are arrived at as finite-energy configura-
tions on, say, planes; and it is this fact that identifies the
point at infinity, leading to a closed manifold on which
the field theory is described. Strictly speaking, therefore,
the closed manifold of our problems comes endowed
with a marked point, even though the location of the
marked point is arbitrary, usually due to some global
symmetry. For such base point-preserving maps, there
is no constraint on 8.
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Figure 8. A torus is represented by a rectangle in which opposite
stdes are identified. Identical particles are placed in a row along the
diagonal. o, exchanges ith and (i+ I)th particle. a,, b, are loops that
take kth particle around the two non-trivial cycles of the torus.

On a torus, we need similarly to consider By(7%). The
closed loops on a torus are generated by the action of
o; (i=1,2,..,N—1) which exchanges the ith and
(i+ 1)th particles, and by a, and b, (k=1,2,...,N), the
generators of the kth particle around the two nontrivial

homological cycles on a torus (Figure 8).
It can be argued that the N independent one-

dimensional representations correspond to =0 and =;
bosons and fermions. Fractional statistics is possible
only when we consider higher dimensional representa-
tions with marked point preserving mappings.

The presentation of the group By (T?) includes apart
from the usual relations,

OO0k +10k = Ok+10k0k+1
and

O-k JI=GI Jk;ll_kl Z 2.
relations involving g, and b,:

a,0;=0;a,;j = 2

and

2. . —1 —1
oi=a;" b;,, a;b;,.

$

The spin-statistics connection implies that all ex-
changes can be related to a 2rn-rotation, which we will

denote as Z.
0;= 0;= R;x=Rjy,=2.

This commutes with every other generator.

It is enough to consider the generators a, and b,,
since the rest are reducible by the process of successtve
exchanges. Denote them as a,=X "' and b,=Y. The
relevant group is characterized by the relations

XY=2Z2*YX;[Z,X]=0=[2,7Y].

We are to find the representations of the group with
these relations for the generators X, Yand Z.
Solutions

For a one-dimensional representation, obviously Z%=1
and hence Z= +1 (bosons) and Z= -1 (fcrmions) are
the only two possibtlities.
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For a two-dimensional representation, we may assign
X=1,, Y=iry familiar Pauli matrices, leading to
Z= xil. Alternatively, it 1s possible to have X=1,,
Y=it,, so that, Z= £ I. While the latter implies under
exchange Y (g)— £y (g), bosons and fermions, the
former implies Y (q) — iy (q), the so called semions, a
state midway between boson and fermion (8=nr/2).
Generating similarly the n dimensional representation,
we have

Z*=wl, o=exp(2nik/n) k=1,2,...n—1.

The exchange operator Z=y\/51 =exp(imk/n)l depends
on n, the dimension of the representation and not on
the number N of the particles. Hence, it is a valid
assignment of statistics. We have in them a new species,
a truly non-abelian statistics possible only in two
dimensions. Perhaps there will be some interesting
applications of such possibilities of fractional non-
abelian statistics.

The analysis can be generalized to compact surfaces
of arbitrary genus. The resultant group will have
generators Z and X,, Y; (i=1,2,...,9) and representa-
tions similar to the case of a torus can be identified.

Conclusion

We have shown that the spin—statistics connection has
a topological basis and needs only the notion of an
antiparticle. This is extendable ‘to two-dimensional
spaces in which the fractional spin i1s linked to the
fractional statistics. On compact surfaces, further
constraints exist that cause only bosons to be
sustainable on spheres; similarly only bosons and
fermions are permitted on a torus. We observe that, by
considering base point-preserving mappings on a torus
and, simlarly, higher-genus surfaces, we have states
with multicomponent representations satisfying fractio-
nal statistics. These novel states may have interesting
applications.

. Balachandran, A. P, Tlinarson, T, Govindarajan T. R. and
Ramachandran, R, Staristies and Spim on Compact 2D Surfaces,
IMS¢ preprint (to be published).

2. Streater, R, F, and Wightman, A. S, “PCT, Spin and Statitics and

Al That, WA Bengamun Inc.,, New Yorh, 1964,

Wilczeh, I, Phus, Rev, Let, 1982, 49, 957,

1. Fiohelsten, D and Rubinstemn, J., J. Math Phys. 1, 1V068, 1762,

5. Govindaragan, T. R, and Shankar, R, Mod Phys. Letr, 1989, A4,
1457

-t



