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preceded it for centuries. {t has demanded fundamental
changes in our 1deas of scientific predictability, of
determinism and indeed of the whole nature of physical
reality. These aspects of quantum theory, to which
Bell’s theorem was addressed, have fascinated not just
physicists but the larger intelligentsia, including philo-
sophers, theologians and even litterateurs.

To begin with, the predictions of quantum theory are
nrobabilistic. But unlike the use of probability and
statistics 1n classical phystcs or 1n the social sciences,
the probabilistic feature of quantum theory is meant to
be intrinsic, not due to limitations of available data or
our calculational stamina. Quantium theory demands an
unavoidable influence of the very act of measurement on
its resuit. If we measure the position of a particle,
knowledge of its momentum becomes totally uncertain,
and vice versa. Simifar statements are true for many
pairs of ‘simultaneously incommensurate’ observables.
Quantum theory also forces us to accept situations in
which a system consists of, say, two spatially well-
separated components where, while the results of
measurement cannot be precisely predicted in either
component, yet, given any specific result m one of the
compenents the result 1n the other 1s fully determined!
These are examples of the famous EPR paradox, to
which we shall return shortly.

Is the real world actually so bizarre? Or are these
vagaries of a very successful but nevertheless incompiete
description called quantum theory, while ‘actually there
1S an cobjective reality out there’, with simultaneous and
precise values for positions, momenta, ¢tc.? Is if even
meaningful to ask such questions about the nature of
‘true reality’ within the purview of science, unless one
can 1dentify measurable criteria which can answer them
objectively?

Such issues have bothered people ever since the
inception of quantum theory. The great Albert Einstein
had serious reservations about gquantum theory because
of its conceptual features and in 1935 he wrote (with
B. Podolsky and N. Rosen) a seminal paper constructing
the EPR paradox mentioned earlier, to give focus to
what worried him. The debates between Niels Bohr and
Einstein (‘'God does not play dice’—this from Einstein)
on these questions are legendary. Inspired by Einstein,
several people tried to construct a more fundamental
theory which s deterministic and consistent with
classical ideas of objective reality. Constructing such
theories in a responsible manner 1s not at all easy. It
must not only reproduce all the experimentally
confirmed predictions of quantum theory, but also
suggest other concrete measurable consequences that
could distinguish it from quantum theory.

Not surprisingly then, this field of study progressed
slowly and inconclusively, with occasional carefully
thought out papers by very serious thinkers mixed in
with relatively superfictal hidden-variable alternatives
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which did not carry conviction, not to mention missives
from a varietv of nuts, cranks, and malcontents.

Into this somewhat confused scenario with a hetero-
genous literature came John Beil's work, cutting
through 1t like a beacon of crisp cold light. Given &
class of EPR type of experiments, Bell constructed
explicit measurable criteria which could distinguish
between the quantum and classical pictures of reality.
His criteria were in the form of simple mathematical
inequalities. To paraphrase {a potentirally dangerous
step in this subject), his inequality in such an experi-
ment would involve a combination {let us call 1t C) of
quantities that can be objectively measured by these
experiments, If the experimental results were {ully in
accord with the standard predictions of guantum
theory, then the value of C, suitably normahzed, would
have to be less than one. On the other hand, if the
system were governed by some deeper ‘classical’ type of
theory, (where all particles did simultaneously ‘possess’
specific values for all their physical attributes, such as
their posttions, momenta, all spin-projections, etc.,
governed in turn by some deterministic rules) then the
value of ¢ would have to be greater than one! This is
regardless of the specific mechanisms and the details of
the underlying classical candidate theory. The important
feature of Bell's ingenious criterion was that it was
based solely on objectively measurable experimental
numbers, It elevated the forty-year-old debate over the
quantum versus the classical nature of reality from
being a perennially inconclusive controversy involving
metaphysical or subjective preferences, to something
that could be objectively decided.

Subsequently, Alain Aspect and collaborators at
Paris conducted a practical version of such thought-
experiments. On applying Bell’s inequality to the data,
quantum theory was vindicated. More importantly,
the possibility of some deeper classical explanation of
the data was ruled out. Of course all this does not
diminish the bizarre nature of the quantum view of
reality, which continues to violate our intuttive notions
based on day-to-day experience. But, as Bell’s work has
established, it nevertheless seems to be unavoidably
true, and we just have to live with it.

The ABJ anomaly

In 1969, John Bell and Roman Jackiw, another dis-
tinguished theoretical physicist now at MIT, dis-
covered the phenomenon of ‘anomalies’ in four-
dimensions. Stephen Adler at Princeton had also
discovered the same thing around the same time,
independently and by different methods. Anomalies
refer to the violation, upon quantization, of some
symmetry of a system (and the associated conservation
law) present at its classical level. Generally speaking,
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the symmetries and conservation laws of a dynamical
system can be preserved upon quantization. For
instance, classical mechanics tells us that the total
momentum, angular momentum and energy of a pair of
bodies bound to one another by any central force will
be conserved. This is one of the most important and
useful results of classical physics, and 1s related to the
fact that such a system is symmetrical with respect to
overall displacements in space and time as well as with
respect to rotations. When such a system is quantized,
1.e. the dynamics of the system obtained using the rules
of quantum mechanics, all these conservations continue
to hold. The non-relativistic quantum theory of the
hydrogen atom is a well-known example. This i3 true
even in a careful relativistic treatment of the electron
and its radiation field, as is done in quantum electro-
dynamics (QED). In fact, in QED, besides total energy,
momentum and angular momentum, total electric
charge is also conserved. This is indicated by the
continuity equation, 0,7*=0 where /* refers to the
electric current of the ciectron—positron system.

What Adler, Bell and Jackiw (ABJ) discovered was
that such preservation of classical conservation laws
need not hold in every instance, sven mm QED. The
culprit they uncovered was the axial vector current (the
pscudovector counterpart of the electric current)
denoted by j&. If electrons are taken to be massless then
QED enjoys at 1its classical level, an additional
symmetry called chiral symmetry, with the associated
conservation of this axial current. ABJ found that when
the quantization of this theory 1s carried out carefully,
this axial current is in fact not conserved. Instead one
gets
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where, F, 1s the electromagnetic field tensor. This is the

ABJ anomaly.

[ It should be mentioned that the first example of such
an anomaly was actually found way back in 1962 by
Julian Schwinger, one of the architects of modern quan-
tum field theory, in a two-dimensional toy version of
electrodynamics. But Schwinger, a man of few words
and many long formulae, took this result in his stride
and did not especially emphasize it. Most physicists,
tncluding most particle-theorists either did not know
about this finding of Schwinger, or took it to be an
artefact of two dimensions. When Adler, Bell and
Jackiw discovered a similar effect in realistic four
space-time dimensional QED, it was a great surprise
since, by then, QED had already been studied
extensively by thousands of theonsts for decades.]

That the mass of electrons in the real world, though
small, is not actually zero does not diminish the
importance of the ABJ anomaly. True, the axial current
1s then not conserved even classically, but the extent of
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its non-conservation in the quantized theory is
substantially altered by the ABJ anomaly. Hence the
ABJ anomaly 15 not just some theoretical sophistry. It
affects the behaviour of real electrons, quarks, ete. and
has experimental consequences such as 1n the decay of
the n° meson. Subsequent to the ABJ papers, similar
anomalies have been unearthed in other contexts. The
subject of anomalies has grown into a sub-field of
particle theory, yielding among other things, an
important principle restricting the class of permissible
models that can be entertained in particle physics. {t
also provided a principal motivation for superstring
theory. At a deeper level anomalies also have a
geometrical significance, and have been instrumental in
introducing modern mathematical 1deas of cohomology
into particle theory.

Bell’s theorem and the ABJ anomaly are topics quite
different from one another not only at the technical
level, but in the very nature of their preoccupations.
That Bell could straddle two such disparate subjects, let
alone make a major contribution 1n each, 15 testimony
to his intellectual versatility.

John Bell, the man

Some characteristics of John Bell the man are already
reflected 1m his physics. Take his work on the
foundations of quantum theory, described earher. Most
physicists have been aware of the disquieting conceptual
aspects of quantum theory, but few have worned about
them seriously. Most have been content with using the
theory at the operational level, where it was already
complex enough to keep their inteliects challenged, and
where its predictions continued to be supported by
millions of bits of experimental data. Partly, this
attitude may have been based on just taste and
temperament. But partly, it was also born of professional
pragmatism. That Bell chose to work during the prime
of his career in this field, of little utilitarian value and
clouded with metaphysical overtones, speaks of his
intellectual courage and individuality.

There was nothing remotely mystical or woolly in
Bell's work leading to his theorem. On the contrary, it
ingeniously brought a seemingly metaphysical contro-
versy within the fold of objective science. Nevertheless
because of its profound implications about the nature
of reality, it had a wide impact and he was even sought
after by rehgious and mystical sects. I have often discus-
sed with him over lunch his experiences with such
groups. Characteristically, he did not flinch from
contact with them. While brooking no nonsense, he was
willing to give the unconventional a fair chance.

For this was a man of deep convictions who made up
his own mind about things. He was a vegetarian by
choice, and, to the best of my knowledge, a teetotaller.
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[n his manner, John Bell was gentle and soft-spoken.
But 1 do not think this was due to either timidity of
soul or tepidity of feelings. [ suspect that consistent
with his flaming red beard there lurked volcanic
passions, which he kept under tight control through self-
discipline. T have seen glimpses of this during our
scientific collaboration (especially the joint writing-up
of our manuscripts whose wording entailed hard

negotiations!). I mentioned ali this once to John and his
wife, Dr Mary Bell, when my wife and 1 were dining
with them. If I remember rightly, Mary chuckled
knowingly and John rewarded me with one of his
gentle, wry smiles. So, I could not have been entirely
wrong! Indeed, If I had tried here to paint John as an
1dealized saint rather than a man of real flesh and
blood, T don't think he would have approved!

Mathematicians are somewhat reluctant to communicate the beauty of mathematics ro others because its
language is not so easily understood. When the Fields Medal was awarded to Prof. Vaughan Jones, we
approached one of his cotlaborators, V. S. Sunder of the I'ndian Statistical Institute, Bangalore, to write about
Jones and his work. We got his article and because of it we were able to persuade other youny
mathematicians (of TIFR and RRI) to write about the three other medallists—Prof. Viadimir Drinfeld,
Prof. Shigefumi Mori and Prof. Edward Witten. We publish these four essays in this issue. Emboldened by

this attempt we intend to publish hereafter papers/special issues on mathematical themes. We shall, of course,
depend on our mathematicians to participate in this venture.

—Ed.

From von Neumann algebras to knot
invariants—The work of Vaughan Jones

V. S. Sunder

VaucHAN JONES was one of four mathematicians
awarded the Fields Medal at the International
Congress of Mathematicians, held at Kyoto in August
1990. (For the uninitiated reader, it may be recalled
that there is no Nobel Prize for mathematics, and the
Fields Medal is commonly thought of as the mathe-
maticians’ Nobel Prize, this Medal being awarded, at
the International Congresses which meet once every
four years, to mathematicians not yet 40 years old.)

The aim of this article is to try and give an idea, to
the interested lay person, of some of the beautiful ideas
that went into, and came out of, Jones’ pioneering
work. (The unexplained or technical terms appearing in
the next paragraph will be carefully explained later in
the text; the paragraph is meant to state or explain a
point of view that underlies this article as well as much
of Jones' research: suffice it to say that a case is being
made for the operator-algebraic approach.)

To put things in a nutshell, the early eighties found

V. S. Sunder is in the Indian Statistical Institute, Bangalore 560 055.
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Jones working on subfactors, these objects being of
interest in the theory of von Neumann Algebras. Now
the latter algebras were initially introduced by von
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Neumann due to considerations stemming frqm the
mathematical foundations of quantum mechanics and
von Neumanrn was interested in these algebras not least
because they laid the foundations for making mea'ningful
statements of the form *§ has dimensiop .57 10 voD
Neumann's theory, all possible positive real-—possibly
even irrational, and not just whole or intggral—
numbers were possible values of the dimension of
somethipg. Coming back (or forward) to Jones, he was
investigating a more restricted class of objects '’ (tha:n
von Neumann), and proved the remarkable fact that 1n
this case. there were only a very few special numbers
iess than four that could now arise as the ‘dimension’;
the other half of his analysis—the half that connected
with knot theory—was in showing that al} these special
numbers did arise as dimensions in this restricted
context.

Next came the icing on the cake! Jones noticed a
strong similarity between some of the relations he was
led to in his analysis of subfactors on the one hand, and
some relations featuring in the area of Topology called
knot-theory, on the other; it was not long before he
made an explicit connection—rather than the purely
heuristic similarity noted earlier—and obtained some
ground-breaking results in knot-theory.

As indications of the significance of his results, we
shail just mention a few: (i) there has been such a new
surge of life in research on knot-theory after the
appearance of the Jones polynomial invariant of knots
that some of the celebrated Tait conjectures finally bit
the dust and had to give up their former roles of
‘unsolved problems’ of more than a century’s standing,
and settle for the current role of being just facts; (11} new
connections have been perceived between such diverse
areas as statistical mechanmics, knot theory, ven
Neumann algebras, quantum field theory and (the
recently emerging theory of ) quantum groups—the last
two subjects also having champions in Witten and
Prinfeld, respectively, who were also among the Fields
Medallists at Kyoto; and (ii) the efficiency of the Jones
polynomial at detecting different knots has led to fairly
effective empirical identification processes in molecular
biology.

We now quote the first few lines from a fairly recent
article of Jones {[J3]):

A lot has been made in the last few years of
connections between knot theory, statistical mechanics,
Jield theory and von Neumann algebras. Because of their
more technical nature, the von Neuwmann algebras have
tended 1o be neglected in surveys. This is not an accurate
reflection of their fundamental role in the subject, both as
a continuing inspiration and as the vehicle of the original
ties between statistical mechanics and knot theory. . . .

The present author is sympathetic to this point of
view not least because of his own personal prejudice as
a result of being one primarily interested in von
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Neumann aigebras. The point the author wishes to
make is that while discussions, with no reference to von
Neumann algebras, of the Jones mvariant of knots, are
possible, the fact remains that barring Jones’ input from
the von Neumann algebras angle, all the other
ingredients that are necessary n arnving at the Jones
invariant, already existed in 1930. The conclusion that
the author would like to draw 1s that, but for the point
of view inspired by the continuously varying dimensions
that is characteristic of von Neumann algebras, the
connection with knot theory is unlikely to have ever
been made.

The rest of this articic 15 organized as foliows: the
next two sections are devoted to some basic facts (all
known before 1930, nevertheless still fascinating to one
seeing them for the first time) about knots and braids,
the latter often being the means with which to study the
former; the penultimate section is devoted to a (perhaps
too) brief discussion of von Neumann algebras and
Jones” work on subfactors; and the final section is a
discussion of the Jones invartant of knots, (We discuss
only the so-called one- {rather than the two-) variahle
polynomial invariant of Jones, since less technicalities
ineed to be surmounted in such a discussion.)

The reader of this articic who i not interested in
techntcalittes might like (o note that thc technical
remarks have been minimized and usually made as
parenthetical remarks, and should hence not be
alarmed at being in the dark about some of those
parenthetical comments (which may be ignored without
much loss).

The problem of knot theory

A knot 15 essentiatly just what you think it is: the sort of
thing you see on most shoes, and which are sometimes
just 1mpossible to disentangle. The only variation is
that we shall usually think of our knots as what you
would get if you glued the free ends of the shoelace-
knot together.

Thus some examples of (plane-projections of) knots
are shown i Figure {. (The purist might like to make
the distinction that the above are actually only two-
dimensional projections of a knot, with care having
been taken to indicate the over- and under-crossings;
further, only transverse intersections and double points
appear in these plane-projections; such projections are,
however, generic in a natural sense.)

The first knot is clearly not knotted at all and hence
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called the unknot; the second knot i1s also not really
knotted, since it can clearly be ‘wiggled around’ until it

it 1s further true that each component 1s the unknot.
Just as we spoke of knot-invariants, we-may, and do,

looks exactly like U. We shall think of these two knots
as being the same (un)knot. (The pedant in a mathe-
matician might feel happier in re-stating the foregoing
thus: a knot is a (homeomorphic) copy of the circle S*
in R, two knots being identified if there is an isotopy
(= continuous deformation via homeomorphisms of the
identity automorphism) of R? that carries the one knot
to the other. However, we shall, by and large, settle for
a heuristic discussion, mn the interest of the reader not
interested in technalities.)

The third knot (and the fourth, for that matter) is
knotted. Not only does it not seem to yield to some
preliminary attempts at unknotting 1t, 1t never will
More 15 true: the knots T, are different {and non-
trivial} knots, the so-called trefoil knots. (‘Different’ here
means that 1t 1s impossible to ‘wiggle’ the left-handed
trefoil into the right-handed one.)

What we call the problem of knot theory 1s that of
determining whether two given knots are equivalent or
not equivalent. The equivalence of two given knots is
usually established by explicitly constructing a defor-
mation of the one onto the other. Knot theory comes
into play when onc attempts to establish the non-
equivalence of knots. Such distinctions are usually
detected by some properly of knots which 1s possessed
by the one and not by the other, such a detection being
invariably made by the use of some knot-invariant.
More formally, a knot-invariant 1s a rule whereby each
knot is associated with some object (varying over some
set, the range of the invariant) in such a way that
equivalent knots are assigned the same ‘object’. Given
such a4 knot-invariant, it follows a fortio*i that if two
knots are assigned diferent values by this mvariant
rule, then those two knats should have been incquiva-
lent to start with.

To give an idea of what we mean, as well as for later
purposes, we define a link to be a ‘multi-component
knot”, thus some links are illustrated in Figure 2. The
point is that we now have several knots—two in each of
the above examples—which are {possibly) interlinked;
sometimes the several components might be completely
unlinked as in the case of the first two exampies;
consistent with our earlier convention concerning
equivalence of knots, we shall think of the first two
links above as being the same hnk, In view of the
obvious possibility of deforming L , into U,; this link 1s
called the unlink on two components—it s significant
that in addition to the two components being unlinked,
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Figure 2,
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speak of link invariants. A simple example of a link-
mvariant 13 the number of components of the link. The
next section will be devoted to describing a strategy for
obtaiming link-invanants.

From braids to links

When an Indian mother plaits her daughter’s hair, she
i effectively creating a three-strand braid. (On the basis
of a small sample of women 1 spoke to, [ believe that it
s almost always a three-strand braid that is employed,
although T am told that five-strand braids are not
unheard of, in this context.)

5o, what 15 a braid {or more precisely, what is an n-
strand-braid where n 15 some integer larger than one)?
Imagine two horizontal rods with »n hooks each, and
imagine that there are n strands {of string, say), so that
the three (sets of ) objects are ‘tied up’ subject to the
following rules: {1) to each hook is tied one end of
exactly one strand; and (1) the two ends of each strand
are tied to two hooks, one from each rod. Of course,
and this 1s the whole point, the several strands are
allowed to ‘tangle’ with one another in their passage
from one rod to the other. (A technical requirement that
1s made 15 that the strands should proceed monotonically
and arc not allowed to ‘double back’; the reader who
does not make sense of this condition should ignore 1tl)
Thus, two possible rather simple examples of 3-strand
braids arc illustrated 1n Figure 3.

As 1n the case of knots and links, we think of two
braids {with the same number of strands) as bemng the
same 1f it s possible to ‘continuously deform’ the one
onto the other. Thus, actually, the two {3-strand) braids
in the illustration are equivalent.

The feature of braids which allows the use of vast
areas of mathematical data is that which allows
composttion of braids, provided they have the same
number of strands. Thus, if « and f are two n-strand
braids, the composite aff s the braid obtained by
‘identifying the bottom rod of o with the top rod of £,
as shown in Figure 4 (where n=3).

The good thing about this rule of composing braids
is that the collection B, of n-strand braids—or more
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Figure 3.

1287



SPECIAL SECTION

2 f3

Figure 4.

accurately, the collection of ‘equivalence classes of -
strand braids—becomes, when equipped with this rule
of ‘multiplication’, what is known as a group. Briefly,
this means: (i) multiplication 15 associative, 1e.
(o, Byy=0(fy), for ail «, B, v in B, (i) there 13 an
‘i/dentity braid’ 1, in B, te, zl,=l,x=a forall @ in B,:
and (iii) each braid « in B, admits an ‘inverse braid’, 1e.
a braid 7! in B, such that ax™'=a"'a=1, (the
inverse being obtained by reflection about the bottom
rod). All these notions should be clanfied by the
ilustration shown in Figure 5 (where, of course, n=3).

Among all braids, there are some elementary braids.
To be precise, we fix a sense of orientation, and we
define these clementary braids thus: if the number of
strands is n, then there are (n— 1) elementary (n-strand)
braids; if 1<i<n, the ith elementary braid ¢\ has
exactly one ‘crossing’, this between the ith and (i+ 1}-st
strands and in the manner indicated in the diagram.
(Thus, (™! is the ‘elementary braid’ with the only
crossing changed from an over- to an under-crossing,) A
little thought must reveal that, since any braid has, by
definition, only a fimte number of crossings, every braid
is expressible as a product of the various ¢s and their
inverses. [In this notation, the usual braid that is seen
on women's hair seems to be {{¢¥’’)™! %) for some
n—where "=« .« ... % (n terms). In order to help get

Figure 6,

[288

familiarized with these ideas, the reader 1s encouraged
to ‘draw’ the above braid until (sjhe makes sense of the
preceding statement. |

Thus, the two 3-strand braids featuring in Figure 3
are seen, after a moment’s thought to have the factori-
zations o8 o) o and o ol o4 respectively. We
remarked earlier that these two braids are equivalent. A
slight extension of this thinking shows that, in fact,
a® ol M =g, o ¢ whenever 0<i<n-—1.

It must also be clear that the ‘elementary braids
satisfy: 6\ g™=0'" o\ whenever 0<i j<n and
i#jt1. (In other words, two elementary braids
commute if their crossings involve non-overlapping
pairs of neighbouring strands.) (Figure 7).

The preceding three paragraphs constitute the easy
half of a striking description, due to Emil Artin, of the
group B,. In essence, his theorem has three parts to it:
(a) the Braid group 18 generated by the clementary
braids—in the sense that every braid 1s a product, in
some order, of the elementary braids and their inverses;
(b} the eclementary braids satisty the two relations
described in the previcus two paragraphs; and (c) there
are no other relations—meaning that if G 15 any group
containing elements (g,: 0 <i<<n} satisfyig the relations
() 9419 9iv1 Yi Yivrs O<i<n - 1, and (1) g, =y y,
whenever i+ 1, then there exists a unique mapping =
from B, to & which satisfics: () n {g;)=g,, 0<i<a, and
(b) =m 18 a homomorphism, mecaning that
m(xp)=n(e)n(ff) for all « £ in B, In the language of
the mathematician, the previous two conditions (1) and
(1) are precisely paraphrased thus:

Theorem: ( E. Artin)
The n-strand braid group admits the presentation

B,= (o, 0<i<n:g0,=0,0,and 6,0,,,6,=0;,, 0,0,

i

f0<i<j—-1<n—1)>. ]

A connection between braids and knots/links 15
obtatned as follows: given a braid x, we shall denote by
o™ the link obtained by tying up the ‘loose ends of & as
indicated in Figure 8; thus, for instance, the ‘closure’ [?
of the identity element of B, is just the unlink U,. One
of the reasons that this notion of closing a braid is

m R
'—\\1 | \\
X KL

Figure 7.
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Figure 8.

important lies in the fact that ‘every’ link arises as the
closure of some braid. (The reason for the inveried
commas is that the above statement is valid, without
inverted commas, if one only considers tame links—
these being the links that admit a ‘smooth embedding’
into B*) All this is stated, in the mathematician’s
language as follows:

Theorem: ( Alexander )

Every oriented tame link is equivalent to the closure o®
of an n-strand braid «, for some integer n. (]

Remarks: (1) An oriented link 13 a link together with a
specified ‘onentation’—or preferred sense of direction—
in each of the components of the Iink. In this context, a
braid 15 usually thought of as being oriented ‘from the
top to the bottom rod’ and its closure is equipped with
the only orientation that is consistent with the above
convention of braids (of Figure 8).

(i) Of course 1f the link 1s very complicated, such a
braid might necessarily involve a large number of
strands; this line of thinking leads to the concept of the
braid-index of a link. B

What s important to becar in mind i1s that quite
different-looking braids—possibly involving different
numbers of strands—may have closures that define
equivalent links. What makes it possible to deduce
information about links by representing them as
closures of braids is (Alexander’s theorem and) a
theorem of Markov which, in a sense, describes
precisely when two different braids give rise to closures
that define equivalent links.

To understand Markov’s theorem, 1t 15 necessary to
ficst understand how an n-strand braid gives rise
paturally to an (n+ 1)-strand braid. This can be seen 1n
two different ways: (1) (algebraic) express the given #-
strand braid 2 as a word in the ¢s and define o"* "
to be the (n+ 1)-strand braid obtained by forming the
corresponding word in the ¢{""''s; and (ii) (geometric)
define o"* 1 to be the (n+ 1)-strand braid obtained by
taking o' and ‘adding an additional (n+ 1)-st strand at
the right extreme that goes through without tangling
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with any of the first n strands. (A glance at the second
part of Figure 9 should provide any clarification that
might be necessary.)

Let us call a *Markov move of type I’ the process of
passing from a braid o to a braid g if there exists a
positive integer n and a braid y such that a, 8 yeB, and
f=yay~!; similarly let a ‘Markov move of type IT’
consist in passing from a braid « to a braid fi—or vice
versa—provided there is a positive integer n such that
e=o"eB, and f=p0F D=0+ (gh+tINtl 4n B ..
(The notation «eB, signifies that x is an (equivalence

class of an) n-strand braid) We may now state
Markov’s theorera thus:

Theorem: ( Markor)

Two braids = and f (possibly involving differéht
numbers of strands) have equivalent link closures if,
and only 1f, it 1s posstble to pass from « to § by a finite
sequence of Markov moves (of cither type). N

|y

(The Figure 9 is meant to illustrate the “if* half of the
theorem; specifically, they show that the ‘equivalence
class’ of the hink-closure of a braid « is unchanged when
the braid « is subjected to Markov moves of either type;
thus, for instance, the type [ case i1s seen by ‘inserting a
comb between the second and third braids and
combing it all the way around’ as illustrated.)

We conclude this section with a brief discussion on a
theoretical prescription for obtaining hnk-mvariants:
suppose we somechow have a rule {and obtaining such a
rule 15 where the hard work comes tn), by which to
assign an object P(a} from a fixed set S (the range of the
invariant) to each braid « {on any number of strands),
and suppose this rule has the feature that Pl{a)=P(fi)
whenever o and f are braxds that are related by a
Markov move of either type; it then [ollows that the
assignment o™ ~ P(«) is a meaningfully and unambi-
puously defined invariant of onented tame links. {In
more detail, take any link L. resort to Alexander’s
theorem to find some (non-uniquely determined) braid
« such that ¢*= [ ; then, thanks to Markov's theorem
and the postulated feature of the rule a — P{a), the
object P(a) depends only on the equivalence class of the
link L., and hence deter nines an invariant of the hnk

A
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Figure 9.

1289



SPECIAL SECTION

E—— o

iI, Factors, subfactors and Jones’ index

We begin by taking a closer look at the notion of
dimension and suggest a reformulation of the notion
that will be suitable for generalization. To start with,
the space we live in is ‘three-dimensional real space’; the
analytic formulatien of this space R’ is as the set of
ordered triples x =(x,,x,,x5) of real numbers, endowed
with certain operations called scalar multiplication and
veetor addition which capture the ‘linear structure’ of R”.
(This means that we can, given vectors X,y in ®° and a
real number A, form vectors denoted AX {(={ix,,Ax4,AX3))
and X+y (={x, +v,.x, T Vs, X5 T 3)), and these opera-
tions satisfy certain ‘natural’ compatibility relations.)
Exactly the same prescriptions, with 3 repiaced by an
arbitrary positive integer n, result in n-cimensional real
space R". An age-old dictum of abstract mathematics is
that all the information contained in a set endowed
with a ‘structure’ 1s contamed in the coliection of those
transformations of that set which ‘preserve’ that
structure, the collection of such transformations inherit-
Ing a natural algebraic structure. In the case of R, this
leads us to look at the so-called linear transformations
of R", viz. those transformations—such as projections
(onto subspaces), reflections and rotations—which fix
the origin and map any three collinear ponts to three
collimear points. It 1s not hard to prove that such
transformations are descnbed by nxn real matnces.
(An nxn real matrix is an array x={{x;)) of n* real
numbers arranged in a square array with n rows and n
columns, with the above notation signifying that the
real number x; appears at the ntersection of the ith
row and jth column of the matrix x.)

The collection M, (R)of all n X n real matrices has the
structure of an involutive algebra; in addition to being
able to multiply a matrix by a real number as well as to
add two matrices, we can also multiply two nXn real
mairices as well as form the ‘adjoint or transpose’ x* of
a matrnx x, these operations being ‘compatible’ 11 a
natural manner. (We do not go into more detail; 1t
suffices to know formally that M, (R) admits such a
‘structure’.) The final bit of structure on the matnx
algebra 15 that 1t admits a4 unique ‘normalized trace; 1.e.
there exists a umique mapping x—trx, from M, (R)
to R, satisfying, for all matrices x, y and all real numbers
A, pi, the conditions: () tr(Aax+uy)=Atrx+yutry, (1)
tr xy=tryx, and (ui) tri=1, where the 1 on the left
denotes the so-called i1dentity matnx. {The normalized
trace of mafrix

x=((x;}} 1s given by tr x=-E7_ x;;.)
n

To each ‘subspace’ of R™—meaning a line or a plane
or a possibly higher dimensional ‘hyperplane’ through
the origin (or more precisely, a subset of R" that is
‘closed’ under scalar multiplication and vector
addition}—1s associated a canonical matrix, viz. the
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matrix that represents the linear transformation cor-
responding to ‘perpendicular projection’ onto that
subspace. Such projections are algebraicaily characten-
zed as bemg elements p of M, (R} which satisfy
p=p¥=p* It is an easy fact from basic linear algebra
that if p denotes the projection onto the subspace. #,
then tr p=k/n, where k i1s the dimension of the
subspace #. (1t goes without saying that as # varies, the
corresponding dimension & ranges over the integers
0, 1,....1n)

In his pioneering investigations into certain special
algebras (that he called ‘rings of operators’ and which
are more commonly known these days under the name
of ‘von Neumann algebras’), von Neumann identfied
certain ‘building blocks® {that he called, and are still)
called factors, and these he classified nto three hasic
types labelled I, Il and IIL In a sense, the matrix
algebra M ,(R)is the prototype of a (finite) type I factor.

Our concern is with the (finite) type 11 factors, the so-
called II, factors. Like the matrix algebra, these are
involutive algebras (over complex rather than real
numbers, due to certain technical reasons) that admit a
unique normalized trace; the key difference is that in
this case, as p ranges over projections n a ll; factor—
ie., satisfy p=p*=p’—the numbers {r p range range
over the continuum of all real numbers between 0 and |
(inclustve). {This must be contrasted with the case of the
matrix-algebra M, (R) where these permissible dimen-
sion-values range over the discrete set of multiples of a
smallest possible dimension.) Another pleasing feature
of I, factors i1s that, while the real {or complex) ‘vector
spaces of finite dimension’ are paramelrized by the non-
negative integers, the ‘modules of finite dimension’ over
a I factor N (say) are parametrized by the noo-
negative real numbers; the number so associated to an
N-module § 15 usually denoted by dim, (9). (The
difference between N-modules and real vector spaces
(such as R”) 1s that now ‘scalar’ multiphcation makes
sense with the II; factor N playing the role of the real
numbers.)

Jones considered nested pairs N« M of pairs of I,
factors. Since products x, y make sense for all x, y in M,
we see, by forgetting that x can come from outside N,
that M gives rise naturally to an N-module usually
denoted by L* (M,tr). (Since modules over 11, factors are
usually Hilbert spaces, the module in question 1s ‘the
Hilbert space-completion IF(M,tr) of M" with respect to
an 1nner product induced by the trace, whereby
{(x, y)=try*x for x,y in M.} When this N-module ‘is of
finite N-dimension’, let us follow Jones' terminology
and say that the subfactor N has finite index in M, and
(denote and) define this index by [M: N]=dimyZ(M,tr).
Past experience with Il; factors would seem to indicate
that all real values (not less than 1—since the index can
be seen, by definition, to be always at least one) might
arise as possible ‘index-values-—i.e. numbers of the form
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