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At the outset let me thank Professor V. Radhakrishnan for inviting me to deliver a lecturc at
this symposium commemorating C. V. Raman. I join all of you in paying my homage to the
memory of Professor Raman.

It may appear from its title that my talk has little to do with the theme of this symposium.
But if the twin words defining this theme — Waves and Symmetry — are interpreted in their full
modern sense then the subject matter of this lecture is directly encompassed by both these
words. Our topic falls entirely within quantum field theory, and quantum field theory i nothing
but the quantum theory of waves. Furthermore our discussion will be -intimately involved with gauge
symmetry. Gauge symmetry is one of the most important symmetries in physics at the fundamental
level. All the basic forces of nature ~ the Electromagnetic, the Weak, the Strong and the Gravitational,
are today described by theories with gauge symmetnes.

Unfortunately, there are sitnations where gauge symmetry comes into unavoidable conflict with
quantum theory. Such situations are examples of what are called “Anomalies” in quantum field
theory. In these cases, although some form of gauge symmetry is present at the classical level, the
process of quantisation necessarily destroys that symmetry. How to consistently treat such cases and
obtain their novel features is the subject matter of this talk, and has been the theme of most of
my research work in the last few years.

It should be pointed out that until these developments took place, the conventional wisdom in
particle physics was that anomalous gauge theories (AGT) - i.e. theories of the kind 1 mentioned
above — are all nonsensical for a variety of reasons alleged against them. What our work, along
with that of several other people now working on this topic, has shown is that AGT are not, as
a class, necessarily crazy or inconsistent. Specific examples of AGT, when treated appropriately,
were shown to be quite consistent, unitary and Lorentz invariant ~ features it was once feared,
none of them would possess.

[ will describe in some detail the proper treatment of one such anomalous theory. Before I do
that hawe‘vcr, it will probably be useful, keeping in mind the composition of the audience, if [
gave a bnef introduction to anomalies in general.

Normally, quantities which are conserved for a given system at the classical level are also conserved
511: the qua{lmm 1&?;1. Thus, tmial momentum, energy and angular momentum which are conserved
E ?YSiZ};]Plﬁl&SgﬂS;lCi glﬁt;-:]lsamcal system contint{c to be | cnnsﬂr?ed upon quantising that system.
’ arﬁcf S n behind this is that the‘symmetnes assocrated with these three conservation laws,

Y, Space-time transiational and rotational symmetry, continue to be symunetries of the quantum
system as weli.

Going on to field theory, generically this continues to hold. For instance consider that most

successtul of all field theories, electrodynamics in (3+1) d . g ‘ _
the Lagrangian density (3+1) dimensions. This theory is described by

Lqep = Y(iv'o, ~ m¥ — -}FN,F”"’ ~ e ¥ TA,. (1)
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Classically, this system conserves total energy momentum, angular momentum and electric
charge. The latter conservation is usually expressed in the form of a continuity equation
3, i* = (8/an)j]° — V-j = 0, where j* is the d4-vector electric current, /* = eWy*¥. This
system 1is also gauge invariant, under the symmetry ¥ — exp[— ieﬂ(;,r)]qf , A, — A, + 3N
When this theory is quantised (QED), all these conservation laws can be maintained. The
associated symmetries, including the gauge symmetry mentioned above, continue to hold. (The
preservation of these properties in QED is not trivially achieved. The quantum theory renders
many quantitics divergent, and the infinities in them have to be suitably removed. This proves
to be possible in QED, furthermore in such a way that all the conservation laws and symmetries
are preserved).

Consider however the special case of massless electrodynamics (Put m = 0 in Lpgp above).
Then the classical Lagrangian has the additional global symmetry under ¥ — exp(iysA)V.
Associated with this is the conserved axial current j% = Wvy*ys¥. But when the theory is quantised
this current 1s no longer conserved. Instead we get

EE

1 ALY
al-bj%_l‘ﬁwz e By B

This 15 an “anomaly”. It was discovered independently by Adler and by Bell and Jack:w. The
reason why this anomaly occurs 1s not easy to understand in simple physical terms. The reason
lies 1n the fact that the current j§ is formally divergent upon quantisation, and the process of
removing its infinite part necessarily destroys its conservation. (Of course, the vector {electromagne-
tic) current j* 1s also formally divergent. But it is possible to render it finite and at the same
time conserved. Associated with this, it becomes also possible to maintain the pauge invariance
of QED whether or not m = 0).

The anomaly in the example mentioned above is relatively harmless. It occurs in the axial
current and not the vector (electric) current j* which couples to A,. The gauge invariance of
the theory is also not affected. Hence massless QED, although it has an’ anomaly n d,j5%, 1s
not what I would call an anomalous gauge theory (AGT).

Consider instead another massless theory, where A, couples only to the right-chiral
current j§ = (e/2)¥y*(1 — vys)¥. The Lagrangian is |

—_ £
Loy = Yiy*s, ¥ —F,, F* —5 ¥ (1~ vs) YA, . (2a)

This 1s gapge-invariant under

v, E—;(l + )V — ¥y,
Pe = -;—(1 — y5)¥ — eXP[-—ieA(j:',r)]‘lfR ,
and A, — A, + 3,4 ' (2b)
Now the anomaly appears in the gauge current jg. It can be shown that
3
‘ € vpor
d,j R = P " F Foo . (2¢)

The gauge invariance described above is also lost upon quantisation. The two phenomena are
related, but we will not go into their connection here. This 1s a more serious form of anomaly

and such a theory is an AGT.
As I mentioned earlier, AGT’s were believed to be sick in a variety of ways. 1t was thought
that they were
(a) non-renormalisable
(b) non-unitary
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(¢) Lorentz non-invariant and

(d) afflicted with mutually inconsistent field equations.
The last of these problems, that of internal mconsistency, was behieved to arise because the field
equation D, F* = j* implies D,j* = 0 which appears to conflict with the anomaly equation (2¢).
The origin of the other allegations requires going into more detall than s possible in this talk.

Now, each of the four problems, if truly present, is a serious blow to AGT. Perhaps, the first,
namely non-renormalisability, is the least serious. It 18 a perturbative notion and may or may not
exist if non-perturbative solutions are someday found. Also, if we use the AGT i question purely
as a low-energy theory, then renormalisability 15 not an issue. Further, some low-dimensional theories
may be super-renormalisable in which case again this problem will not arise. But the remaining
three problems in that list would render any theory quite useless.

We will now describe a two dimensional anomalous gauge theory called the Chiral Schwinger
Model which can be shown to be quite healthy and iree of all the above problems. In fact Jackiw
and I solved this theory exactly and showed that it exphcitly yielded the first counter-example to
the belief that all AGT’s are necessarily sick. The model happens to be super-renormalisable, so
the first difficulty is absent rather trivially. But the remaining three alleged problems evaporate
away in a rather interesting manner.

THE CHIRAL SCHWINGER MODEL

This model is in 2 dimensions, and its classical action 18
_ - e — 1
S|P, ¥,A4, ] = szx[‘l'iﬂf”‘aﬂf — ?llf'y'*(l — v5)VA, — ‘Z‘FMFW]: (3)

where ¥ is a massless Dirac field, s = v’y* and A, is a U(1) gauge field. The classical action is gauge
invariant under ¥p E-}2»(1 — ys)¥ — ¢ ¥ and 4, - A, + 9, A. When this system is quantised,

two things happen. Firstly, the two-point function (A,(x)A,(y)) develops an ultraviolet divergence
due to one-loop fermionic fluctuations. This 15 evident from power-counting 1 the one-feromon loop
Feynman graph. Consequently, an A A" counter-term has to be added to remove this divergence,
which as usual, leaves behind an arbitrary finite part. In short, the quantum theory is arbitrary up
to a finite local term of the form A, A" in the effective gauge field action. This effective action
can be exactly evaluated for this system, using methods developed by Schwinger. The result is

— 2.0 v e T o et a“aﬁ Bv __ _Pv
Wi4,] = [dx 1 F F¥ + = AA = A (g™ + €% (g e™)A,
a m

o L

=14, MMa, & (4)

The second term, with the arbitrary real constant o represents the polynomial ambiguity in the
effective action, referred to above. The situation is in fact very similar to the role of the $* term
in the Yukawa theory, where once again it is absent in the classical action, but 1s induced radiatively.

The second thing that happens upon quantisation is loss of gauge invariance. This is just another
way of saying that the theory is anomalous. One can see that the effective action Wj4,] in eq.(4)
I8 not gauge invariant, even though the classical action (3) is. This is true for any value of «,
including o = 0. Hence gauge invariance does not dictate a unique value of o either. Let us
therefore proceed keeping o arbitrary.

The non-local effective action can be analysed as it is. But it is convenient to make it local by
introducing the chiral field ¢(x). It can be verified that

exp(iW[A,]) = [Dd exp[iS(0,4,)], (5)

where |
S[(brAFv] = J.dt L((b:Ap.):
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o'

| ae” 1 e
LibAl=1dx| —— F F¥ + — A A" + — 3 %D + "~ e*a BA,
[¢‘ lm] J L e . " > Molito i (g~ ") P J

(6)

This 1s nothing but the bosonised action corresponding to the original action {3). The constant o
represents the regulansation ambiguity in bosonisation.

The action (6) is quadratic. The field equations are linear and the system is exactly soluble. The
spectrum is easily obtained from the poles of the propagator G,, (k) gotten by inverting M*" in
the quadratic action (4). The results depend on the value of the arbitrary constant o:

(i) @>1: The propagator has a pole at &* = m* = ¢“a’/4m(a~1) and a pole at k* = 0. Both
poles have positive residue. Thus the theory is unitary and has relativistic excitations
corresponding to masses m and zero. Evaluation of the energy-momentum tensor
also confirms this.

(ii) a<1: The pole in &* is now at negative m*, and its residue also turns out to be negative.
The theory i1s then non-unitary, carries tachyons and is clearly unphysical.

(iii)) a=1: This is a singular point. The theory exists unmitarily even at this special point, but
only the massless matter-ficld exctations survive,

A canonical Hamiltonian analysis starting from the bosomised action (6) reveals the altered
constraint structure brought about by the anomaly. Note that the bosonised action (6) which is
equivalent to the -gauge field action W[A,] obtained by integrating over the fermionic fluctuations,
already contains the anomaly. Thus, a classical Hamiltoman analysis of the bosonised system will
already incorporate, anomalous effects. Once this 1s done, quantisation can be carried out by replacing
classical (Dirac) brackets by quantum commutators.

Let us denote by my, £ and 7 the canonical momenta conjugate to A4,, A; and ¢ respectively.
Early steps in the canonical analysis proceed as in anomaly-free gauge theomnes.

We have
mo(xX) = oL = () as a constraint. (7)
380 Ag)
The Hamiltoman is
H = [dx [EA| + 7d — L + mov] | ﬁ (8)

where v, 1s an as yet undetermined velocity.

Then the consistency requirement

0= {"IT{}(I) ::H}P,B.

2

= 0,E + \/e:? (r + ) + -f;- (A; + (1 — 0)Ay)
= G{(x} i (9)

yields a second constraint which is the analogue here of Gauss Law. However, as distinct from an
anomaly free gauge theory, the constraints here are of the second class for all a#1. (We will return
to « = 1 later).

2

fmo(x), G} = —— (1 = @) a(x = ) (10)

There are no first class constraints and no gauge freedom. The velocity field vy(x) in the Hamiltonian
(8) is uniquely fixed by the consistency of the Gauss Law constraint, i.e. by {G(x},H} = 0. To
put it in other words, the “gauge” for A, is fixed uniquely by the Gauss Law constraint (9). Next
we just follow Dirac’s procedure for treating second class constraints. Dirac brackets are constructed
to replace Poisson brackets. This makes both constraints (7) and (9) hold strongly, and Ay can be
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eliminated using these constraints. The Hamiltonian (8) becomes

— 2 2 -

1 eA; eA , € I
H=-— |Jdx i + | 010 + + A+ —(a—~1) (A + A . 11
ZJ _(ﬂ \ﬁ?) (1¢’ m) 417( ) (Ad 1)_ (11)

Clearly, this is real, unique and positive for a > 1. It is quadratic and easily diagonalised to yield
the spectrum mentioned earlier. Upon replacing Dirac brackets by commutators, quantisation is
effected with no further complications, yielding a Hermitian, bounded-from-below Hamiltonian. The
quantum theory is unitary, self consistent and Lorentz invariant.

Analysis of the « = 1 case involves a few more steps, since now {ms, G} = 0. As a result the
time-preservation of G(x) = O forces two more constramnts, £ = 0 and Ay — A, = (. Collectively
the four constraints are all of the second class. Upon using Dirac brackets, all gauge field variables
Ay, Ay, m and E can be eliminated. It can be checked that the remaining variables ¢ and = (the
matter field) are governed by a free massless Hamultonian:

Hyoy =5 [dx (7 + (3:0)%) (12)

Notice that unlike the gauge-invariant Schwinger model, where again the gauge field can be
eliminated, here the matter ficld remains massless.

LESSONS FROM CSM ABOUT ANOMALOUS THEORIES IN GENERAL

The Chiral Schwinger Model has offered a valuable prototype example for demonstrating the fact
that anomalous gauge theories (AGT), need not be inconsistent, violate unitarity and Lorentz
invariance or in any other way be nonsensical. Being exactly soluble, 1t allows us to explicitly see
how the different alleged problems of anomalous theories get resolved, except for the question of
renormalisability which is absent as a serious problem in this 2 dimensional model.

From the study of CSM, one can abstract some lessons which may be expected to hold in more
complicated AGT as well, even though the latter are not exactly soluble. Let us list a few such lessons.

(i) The pair of equations D F* = ;" and D,j* = anomaly = R(A,) are not necessarlly mutually
inconsistent, as was once believed. Of course these equations together imply that the anomaly
R(A,) obeys R(A,) = 0. This only means that the anomaly must vanish dynamically by virtue of
the operator field equations, and not identically for arbitrary A, (x). Any sclution of any given
AGT will, for its consistency, satisfy R(4,) = 0 for the Heisenberg field operator A,(x,?).

(i) Despite the fact that they must satisfy the vanishing of the anomaly, the space of solutions
of an AGT can be non-trivial. In CSM with @ > 1, we saw that any initial data for A;(x) and
d(x) leads to a solution. The spectrum consisted of one massive and one massless particle, whereas
the anomaly-free Schwinger model contained only one massive particle. In general, other AGT's,
if consistent, can be expected to have as large or a larger space of solutions (degrees of freedom)
than the corresponding anomaly-free gauge theory.

(iii) Lorentz invariance need not be vicolated in an AGT. In the CSM, we explicitly found a
relativistic spectrum corresponding to one massive and one massless species of particles. The Poincaré
algebra has also been established for this model. On reason why some authors may have obtained
non-Lorentz invanant results could be their use of the “Weyl (A = 0) gauge”. In an AGT, gauge
invariance 1s broken by the anomaly. Consequently one does not have the freedom to fix any gauge
condition. To impose an Ay = 0 condition in the face of this is to explicitly break Lorentz invariance
by hand. For instance m CSM, the field A, is fully determined by the constraint (9). It does not
vanish identically. The resulting Lorentz invariant content of the theory would be destroyed if one
required Ag = 0. Of course, if one starts with some alternate gauge-invariant reformulation of an
AGT (with some other action) then various gauges may be fixed, without violating Lorentz invariance.

(iv) However, one aspect of more complicated AGT’s about which the analysis of CSM yields
no clue at all 1s renormalisability.

Apart from renormalisability, one expects the other alleged problems of AGT’s to disappear
for the same reasons as they did in the Chiral Schwinger example. We explicitly showed
this to be true for chiral (QCD),, even though the latter is not exactly soluble. Going
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to 4-dimensions, the absence of exact local bosonisation makes corresponding demonstrations difficult.
But a great deal of work has been done by us and others in 4-dimensions using the so called
Wess-Zumino-Witten action, which is the closest analogue in 4 dimensions to bosonisation. Unfor-
tunately time does not permit me to present all this work.

Let me conclude by summarising the situation as follows. Our work on 2-dimensional AGT’s
shows that at least some AGT’s can be quite consistent, unitary and Lorentz invariant. In four
dimensions, the problem of renormalisability continues to remain unresolved even though the other
alleged problems of AGT would probably go away. But unless renarmalisability is established,
conventional perturbation methods cannot be used, and one may have to hold on to the anomaly
cancellation principle in 4 dimensions.
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