An Experimental Study of the Mechanism of Action of Vibrio cholerae on the Intestinal Mucous Membrane*

S. N. De and D. N. Chatterje
Department of Pathology, Niranjan Senar Medical College, Calcutta.

It is difficult to regard the massive outpouring of fluid in cholera as an inflammatory phenomenon in the generally accepted sense. Neither the cholera stool nor the wall of the choleracic intestine shows the presence of inflammatory cells. On the other hand, several workers suggest that the toxin of the cholera vibrio may alter the permeability of local capillaries. Mauwaring et al. (1923) found that 2-7 days' culture filtrate of V. cholerae perfused through an isolated mammalian heart caused oedema of the myocardium. Burrows et al. (1944) demonstrated an increased outflow of fluid from isolated strips of rabbit small intestine immersed in cholera endotoxin. De et al. (1951) showed that intraperitoneal injection into rabbits of a suspension of killed and washed cholera vibrios causes an accumulation of fluid within the peritoneal cavity; this fluid is rich in protein and poor in cells. Evans blue solution injected intravenously leaks into the fluid that collects in the peritoneum. The present investigation is concerned with permeability changes in the capillaries after the introduction of living V. cholerae into loops of small intestine isolated by ligatures.

Materials and Methods

Rabbits weighing 1200-1500g. were not allowed food or water for twenty-four hours. With aseptic precautions and local procaine anaesthesia, a midline incision about two inches long was then made just below the middle of the abdomen, which was opened by cutting through the muscles and peritoneum. A segment of small intestine taken midway between its upper and lower ends was isolated with two silk ligatures; blood vessels were carefully avoided. One ml. of Dunham's peptone-water medium inoculated freshly with one loopful of a twenty-four-hours liquid culture of an Ogawa-strain of V. cholerae was injected slowly into the lumen of the isolated loop. Previous experiments had shown that this was the most suitable dose. The abdomen was closed in two layers with thread. The animal was not allowed food or water and was killed after a further twenty-four hours by the rapid intravenous injection of 5 ml. of air. A careful examination was made of the isolated loops and of the small intestine above and below it. The fluid contained in the distended parts of the small intestine was aspirated with a sterile syringe and measured, cultured on MacConkey plates and in Dunham's peptone-water medium for the detection of V. cholerae, and centrifuged. The deposit was examined microscopically as a wet preparation, both unstained and after staining with Loeffler's alkaline methylene blue. A smear was also stained for cells with Ehrlich's haematoxylin and eosin. The albumin of the supernatant fluid was estimated after precipitating the mucus and globulin with a saturated solution of sodium sulphate. Equal lengths (5-6 in.) of the ligated and of the adjacent proximal and distal parts of the small intestine were slit open, washed, wiped dry and weighed. Small pieces were fixed in 10 per cent. formol-saline and embedded in paraffin; sections were stained with Ehrlich's haematoxylin and eosin. This experiment was performed on ten rabbits and fifteen rats. Six additional rabbits and five rats served as controls in which the sterile, uninoculated medium was injected into an isolated segment prepared in the same way.

Three test animals and two controls were operated on and injected as above; four hours later 4 ml. of a 2 per cent. solution of Evans blue (T. 1824) in normal

AN EXPERIMENTAL STUDY OF THE MECHANISM OF ACTION OF VIBRIO CHOLERAE ON THE INTESTINAL MUCOUS MEMBRANE

Saline were injected into the ear vein. Evidence of leakage of the blue dye into the contents and walls of the different parts of the small intestine was looked for next day.

Results

Injection of V. cholerae into isolated segments of rabbit small intestine

The small intestine proximal to the isolated loop was distended with fluid both in the test animals and in the controls. The fluid was yellowish in colour and its albumin content ranged from 0.42 to 0.50 per cent. The part distal to the ligated segment was collapsed in both groups of animals and no fluid could be expressed. The isolated segment in the control animal was also collapsed and empty in contrast to that of the test animal, which was distended with fluid and swollen to the diameter of the thumb. The blood vessels in the wall of this part were markedly injected and the peritoneal surface of the isolated loop, which appeared dull, was loosely adherent to neighbouring loops. As much as 14-20 ml. of fluid could be aspirated from this segment. The fluid was sometimes frankly blood-stained and often rice-watery with a pinkish hue, but it never showed any trace of yellow colour. Culture from the contents of this segment alone was positive for V. cholerae, the other parts of the small intestine giving negative results. Microscopical examination of the fluid revealed the presence of flecks of mucus, with numerous epithelial cells and vibrios. A pus cell was encountered occasionally, but never any macrophages. Red cells, though sometimes numerous, were usually few in number. The albumin content was invariably high, ranging from 1.0 to 3.8 per cent; the highest figures were obtained from frankly blood-stained specimens. The mean weight of the wall of the ligated segment in control animals was almost equal to that of equal lengths of the proximal and distal parts, but was about 12.7 per cent, heavier than the latter in the experimental animals.

Histological changes. The outstanding microscopic change in the experimental animal was marked oedema and widening of the submucosa of the wall of the isolated loop. The tissue spaces as well as the lymphatic channels appeared to be dilated. The larger blood vessels were much engorged although the minute ones seemed to escape, perhaps due to the pressure exerted by the oedema fluid in the tissues around. The summits of the villi mostly appeared to be necrotic, with evidence of nuclear pyknosis. Many of the stroma cells of the mucosa showed hydropic change, which, however, was absent in the lining epithelium. The muscle layers appeared normal but there was evidence of deposition of fibrin in the subserosa. Nowhere in the wall was there any evidence of cellular infiltration.

Experiments on Rats

Closely similar changes were seen in these animals. The quantity of fluid in the isolated loop of the experimental animals amounted, however, to no more than 0.5 ml. V. cholerae could not be isolated from the contents except in one instance. More detailed examination and further experiments were therefore not continued in these animals. Histologically the wall showed much evidence of vascular engorgement and of hemorrhage and necrosis in the mucosa, but less oedema than in rabbits.

Observations on Rabbits Injected Intravenously with Evans blue

The fluid formed in the isolated segment of small intestine in the cholera animals was coloured blue. Fluid from the small intestine proximal to the isolated loop, both in the test animals and in the controls, showed little or no trace of blue. What little fluid soaked into a piece of clean blotting paper from the collapsed distal parts of both groups of animals and from the isolated segment in the control animals did not exhibit any blue tinge. The wall of the isolated loop in the test animals was a deeper blue than the rest of the intestine.

Discussion

The fluid that accumulated in the isolated loop of small intestine after the introduction of V. cholerae resembled the peritoneal fluid in the experiments with suspension of killed vibrios reported by De et al. The albumin fraction ranged from 1.0 to 3.8 per cent, and the total protein was in all probability high. This suggests that proteins had leaked out from the plasma through the intestinal capillaries and intestinal tissues into the lumen. Support for this view is provided by the observation that the contents of the experimental loop were coloured by Evans blue injected intravenously. This dye is known to be firmly bound to the plasma proteins (Courtice, 1943-44) and to behave like plasma albumin with regard to the permeability of membranes (Rawson, 1942-43). Hence it may be concluded that V. cholerae or its toxic products have increased the permea-
bility of the intestinal capillaries, as a result of which plasma proteins have escaped into the tissue, raised the osmotic pressure and held back the tissue fluid with consequent oedema of the submucosa. A comparable observation was made by Seneviratne (1948) in his experiments with Shiga toxin, although the oedema and increase in weight of the caecal wall which he encountered were much more marked. This difference is possibly due to the free escape of the larger part of the fluid in our experiments through the necrosed superficial portion of the mucosa into the lumen where the main collection of the fluid had taken place.

The cholera stool is well known to be poor in protein (Schmidt, 1850, cited by Peters and Van Slyke, 1946) and this has been advanced as evidence against the conception of increased permeability in cholera (Saha and Das, 1952). However, Evans (1949) notes that if an animal's own serum be introduced into a loop of its intestine the whole of that serum is absorbed. Homologous protein is thus specifically absorbed from the small intestine, so much so that when protein is found in the stool its source is invariably the large gut (Harrison, 1947). A low protein content of the cholera stool does not, therefore, necessarily disprove increased permeability of capillaries of the small intestine. In an investigation which one of us has been carrying out with Sengupta, it has been found that the content of the small intestine in cholera shows a high percentage of albumin while that from cases of non-choleraic diarrhoea and from some other conditions contains a very small amount of albumin.

Summary

Injection of living *Vibrio cholerae* into the lumen of a loop of rabbit small intestine isolated by ligature is followed after twenty-four hours by accumulation within this loop of a large amount of fluid having gross, microscopic and cultural similarity with the cholera stool. The albumin content of the fluid is high and Evans blue solution injected intravenously leaks into this fluid. These results suggest that *Vibrio cholerae* alters the permeability of intestinal capillaries to proteins.

ACKNOWLEDGEMENT. We wish to express our gratitude to the Indian Council of Medical Research for a grant which has enabled us to undertake this work. Our thanks are due to the Principal, Niranjan Sircar Medical College, Calcutta, for his permission to publish this paper.

10. Seneviratne, R. D., 1948. This Journal, ix, 609.