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Diophantine equations

V. Srinivas

This article gives an introduction, accessible to non-specialists, to the topic of Diophantine
equations. Mainly, this is the study of solutions of polynomial equations f(x,,...,x,)=0 in whole
numbers (integers ), where the polynomial f has integer coefficients. This is broadened to include the
study of solutions of one or more such equations in rational numbers (fractions) and algebraic
numbers. A famous example of a Diophantine problem is given by Fermat's Last Theorem, which is
the statement that x"+ y"=z" has no solutions where x, y, z are positive whole numbers (natural
numbers), if n is at least 3. This problem is still unsolved. Another well-known equation s
x>~ Ny* =1, where N is at least 2; this equation was siudied by Indian mathematicians like
Brahmagupta and Bhaskara. The article gives some historical background, including the works of
Fermat, Gauss and others, leading up to a discussion of some current development—the work of

Faltings, and new ideas related to Fermat's Last Theorem.

Diophantine equations are polynomial equations with
integer coefficients, for which we wish to find integer
solutions.

For example, consider the equations

x* =2y, (1)
x*=2y*+ 1. (2)

The first equation has only one integer solution,
x=y=0, since /2 is irrational. However, the second
has infinitely many integer solutions (one verifies, with
a bit of algebra, that if we write (1+./2)*" in the form
a,+./2b, for some integers a,, b,, then x=a,, y=b, 15 a
solution of equation (2); for example, if n=1, we have
(1+/2=3+2/2, and x=3, y=2 is a solution of
equation (2)).

Certain problems, stated in geometrical language,
reduce to Diophantine equations. For example, consider
the problem of finding right angled triangles in the
plane whose sides have integral length; from Pythagoras’
theorem, this reduces to finding positive nteger
solutions of the equation

xt+y2=2z2,
This problem has infinitely many solutions; one may
verify that for any positive integers a, b with a>b, we
have a solution

x=a*—b?, y=2ab, z=a*+b*
this is equivalent to the algebraic identity

(@2 — b*)? +4a?b* =(a> + b*)".

From our first pair of examples, one sees that in

order to understand integer solutions of Diophantine
equations, there is sometimes an advantage in consider-

ing related problems over larger number systems, which
contain the integers. In our examples, one considers the
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number system consisting of all numbers of the form
a+b./2, where a, b are integers. Such a number system
will form a ring, 1.e. it will be closed under addition and
multiplication; it is called a ring of algebraic numbers.

Next, if we seek integer solutions to x?+ y*=z? with
the additional condition z#0 (which is not a severe
restriction, since x=y=z=10 is the only solution with
z=0), then a solution

X =, };=b1 =

yields a solution in rational numbers (fractions) of the
equation

X2+ Y2=1,

given by X=a/c, Y=b/c. Conversely, if we have a
solution X=A, Y=8 of X*+Y*=1, where A, B are
rational numbers, then we can write A, B as [ractions
with a common denominator, say

A=ajc, B=b/c,

then x=a, y=5h, z=c is an integer solution of
x2+yt=7z%

The term Diophantine equation’ originates from the
work of Diophantus of Alexandria, who first studied
integer and rational solutions of equations. One of
Diophantus’ main results is about linear equations—if

a, b, ¢ are given integers, then the equation
ax+by=c¢

either has no‘integer solutions (x, y), or it has infinitely
many; there are infinitely many solutions precisely when

the greatest common divisor (g.c.d.) of a and b divides c.
Thus,

25x+ 15y=127

has no integer solutions, since the g.c.d. of 25 and 15 1s
5, which does not divaide 127, while

25x+15y=125
has infinitely many solutions (5 divides 125). Diophantus
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also discusses certain quadratic equations (e.g.
x? +yr =124,

Ancient Indian mathematicians were also interested
in integer solutions of problems?®. The solution of linear
equations mentioned above was known to Aryabhatta
(5th-6th century AD). The equation x*—ny*=1, for
any positive n, was studied by Brahmagupta (7th
century), and the general solution was found inde-
pendently by Jayadeva (11th century} and Bhaskara
(12th century).

Probably the most famous (infamous?) Diophantine
equation is ‘Fermat’s Last Theorem™. The chapter on
Fermat in E. T. Bell's Men of Mathematics® is titled
‘The Prince of Amateurs’. This refers to the fact that
Fermat is the m st famous example of a mathematician
who was not a ‘professional’, 1.¢. a professor at a
university, or supported by a wealthy patron. Pierre
Fermat (1601-16635) was a commissioner of requests, and
later a King's councilor in the parlement (the provincial
High Court of Judicature) at Toulouse, in France. He
seems to have become interested in mathematics in his
late twenties, perhaps through the influence of d’Espagnet,
also a magistrate, who was mathematically inchned.
Fermat published none of his results, but communicated
them to some friends. notably Father Mersenne, 1n
personal letters. Nevertheless, when he died, he was one
of the most famous mathematicians in Europe. Today
he 15 best remembered for his work on number theory,
particularly Diophantine equations; yet, 1n his day, he
was better known for his work on geometry, calculus,
probability, and optics. In his book® Number theory—
An approach through history, Andre Weil writes of
Fermat, *...1t is clear that he always experienced
unusual difficulties about writing up his proofs for
publication; this awkwardness verged on paralysis when
number theory was concerned, since there were no
models there, ancient or modern, for him to follow.
Quute clearly, if Fermat were alive today, he would still
have to remain an amateur! Weil also writes (of the
notoriety of ‘Fermat’s Last Theorem’) that ‘his
(Fermat’s) reputation in the eyes of the ignorant came
to rest chiefly upon it’.

‘Fermat's Last Theorem® is the statement that for any
integer 7 2 3, the equation

IH + _]I.'" _ :n

has no positive integer solutions (x, y, =} (equivalently, if
(x, ¥, 2} 1s an (nteger solution, at least one of x, y, z is
zero). Fermat did not announce this result. However,
after Fermat's death in 16635, his personal annotated
copy of Bachet’s Diophantus was examined by his son
Samuel, while preparing an edition of his father's
works. In the margin alongside Diophantus’ discussion
of x*+y*=7z% Fermat remarks, ‘No cube can be split
Into two cubes, nor any biquadrate into two biquadra-
tes, nor generally any power beyond the second into
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two of the same kind’. He adds that he has discovered a
‘truly remarkable proof’ for this fact, which ‘this margin
i$ too narrow to hold’. Since this notation was found,
many mathematicians have struggled (without success)
to prove (or disprove} Fermat’s assertion. A lot of
partial progress has been made, tncluding some recent
progress (which we describe later). There were contro-
versies and priority disputes between prominent
mathematicians over claimed proofs, which eventually
turned out to be incorrect; a prize of 100,000 Marks
was offered by Prol Paul Wolfskehl, a German
mathematician, for the first correct solution. This prize
amount was greatly devalued after the First World
War, but in the foreward to his book® on Fermat’s Last
Theorem, H. E. Edwards wrote (in 1977) that the prize
still existed, and was then worth DM 10,000. Claimants
for the prize should submit their proofs for scrutiny to
the Academy of Sciences m Gottingen.

New light on the subject of prizes (and perhaps on
Hilbert!} is shed by the following anecdote’ about the
mathematiclan David Hilbert, of Gottingen. Hilbert
was the chairman of the pnze commuttee that decided
on the correctness of proofs of Fermat's Last Theoreni;
as long as the prize money remained unclaimed, the
interest on 1t was available to the Gottingen mathe-
matics department to invite prominent academic
visitors to (rottingen. Hilbert is reputed (o have said,
It's lucky that T am probably the only person who can
crack that nut. But I shall take very great care not to
kill the goose that lays us such splendid golden eggs’.

Fermat himself described a proof that the special case
x*+y*=:* has no positive integer solution, by a new
technique, now called Fermat’'s method of infinite

descent. In fact, bermat proved the more general
statement” that

x*+pt=w?
has no ‘non-tnvial’ {i.e. with w+#0) solutions. If x=ua,
y=hb, w=r1s a nontrivial solution, let

h=maximum of a, b, ¢;

call i the height of the solution. Then £ 1§ a positive
integer. However, Fermat was able to show that, given
one non-trivial solution {a, b. ¢) with height h, one must
have another non-trivial solution {(a', &', ¢'), with height
#', such that i’ <h. Repeating Fermat’s argument, one
would obtain an infinite sequence (a,, b, ¢,), 1=1, 2,
3. .. of solutions, with heights h,=h, hy=h, h,,. ..
which form an infinite, strictly decreasing sequence of
positive integers. This is clearly a contradiction; such a
sequence does not exist.

Let {,=exp (Zni/n), which 1s an nth root of unity (i.e.
the nth power of {, equals 1). One can consider the

number system consisting of all complex numbers of the
form

ﬂﬂ+alcn+a3€§+' " +an—lﬂ::-la
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where the a; are all integers. This system forms a ring
{Le. is closed under addition and multiplication), as one
can see by using the equation {=1. It is a familiar fact,
first proved by Euclid, that any natural number can be
factorized into prime factors, and the factorization is
essenfially unique. If one assumes an analogous
statement for the number system obtained from (,, it 1s
possible to prove by ‘infinite descent’ that Fermat’s Last
Theorem is true. Some mathematicians believe that this
might be the argument that Fermat had in mind;
however, the German mathematician Kummer found
that unique factorization is false for the number system
formed from (,3=¢exp {27i/23) (and this turns out to be
the case for infinitely many ().

Certain mathemadticians, the most prominent of
whom was Carl Friedrich Gauss, were less interested in
solving specific equations, like the one in Fermat’s Last
Theorem. They preferred to try to understand why
some equations could be solved, and not others, and
why there were sometimes only a finite number of
solutions, and why there were infinitely many solutions
in other cases. In other words, they wished to develop a
theory® of Diophantine equations. Gauss himself, based
on his famous quadratic reciprocity law, achieved a
thorough understanding of quadratic diophantine equa-
tions In 2 vanables

Jx, y)=0.

For example, consider the equation
x*+xy+5y*=p,

where p is a given prime number. Gauss’ methods show
that this equation has an integer solution (x, y) (which
15 essentially unique) precisely when p=19 (when
x=—1, y=21s 4 soJution}, or else, on dividing p by 19,
one obtains one of the following remainders:

1,4,5,6,79,11,16,17,

(these are the possible non-zero remainders obtained by
dividing squares of integers by 19). For example, it is
known that p=2'?"-1 is a prime number'®. One
computes that p leaves a remainder of 1 on division by
19 {since 2° =512 leaves a remainder of 18, ie. of *—1’,

218 —1 is divisible by 19; but
(2127 [)— 1 =2127 2= (2126 1)=2 ((2'8)"~ 1)
which is divisible by 2!¥—1, and hence by 19. Hence
x*+xy+5yt=2147~1

has an integer solution. The special role played by 19 is
because the discriminant of the quadratic expression 1s
— 19 (the discriminant of ax®+bxy+cy? is b* —4ac). A
more spectacular exdmple is the statement that

x4 5xy+47y? =211213 -1
has an integer solution'’. Gauss also studied generali-
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zations of quadratic reciprocity, which eventually led
Hilbert and others to what i1s now called class field
theory'?®.

The first general result on higher degree equations
was obtained by the Norwegian mathematician Axel
Thue, in 1910. Let f(x, y) be a -homogeneous
polynomial of degree d 2 3, 1.e. we can write

d
£l )= T axy,
r=10
where the a, are all integers; assume @,#0. Suppose f
cannot be factorized as a product of two polynomials of
smaller degree, with integer coefficients. Then for any

integer m#0, Thue showed that the equation
flx, yy=m

has only a finite number of integer solutions. The proof
1s based on the following idea: write

d
flx, N=a, 1}1 (x = a,y)
where «,, o,,...,%; are the (complex) roots of the
equation

f{t, D=a,+at+a,t*+... ap’=0.

If x=p, v=¢ 15 an integer solution of f{x, y)=m, then

d
a; 11 (p—aq)=m,

r=1

so that on division by g we get

(p ) m
1\ d,d

If g is very large, then since m/(a,q°) is very small, p/g
must be a very good approximation to ong of the roots
®,. On the other hand, Thue managed to show that
such a good approximation cannot exist'®. Thus, the
integer solutions of f(x, y)=m have a bounded value of
y; this easily shows that the corresponding x values are
also bounded, and hence there are only a finite number
of solutions. Carl Ludwig Siegel refined Thue’s 1deas to
find necessary and sufficient conditions for an arbitrary
Diophantine equation (in 2 varables, with integer
coefficients)

J(x, y)=0

to have infinitely many integer solutions. These
conditions are best understood in terms of the geometry
of the algebraic curve given by the solutions of the
above equation over C, the complex numbers.

If f(x, y) has degree d, we can uniquely decompose f
as

[N

r

fi p=hx, y)+k(x y

where h is the sum of the terms in f of degree exactly d
(i.e. the terms involving x'y?™ for 0<i<d), and & the
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sum of the terms of f of degree <d—1. Since h 18
homogeneous of degree d we may factorize 1t (as seen
ecarlier during the discussion of Thue’s work)

d

hix, yy=a Il (x—ayp)

=1
for certain complex numbers «,5,...,%;, and a non-
zero integer g (this assumes that A has a non-zero
coefficient of x but this can be arranged after a
homogeneous linear change of vanables). Some of the ¢;
may be repeated; suppose there are exactly s distinct «;.
It turns out that if we let U be the subset of the
complex 2-dimensional space C* consisting of the
complex solutions to the equation f(x, y}=0, then one
can ‘adjoin’ s points to U, to get a space X which 15 a
‘compact Riemann surface with singulanties’. Intutively,
we may argue that C? is 4-dimensional, while the
equation f(x, y}=0 with complex coeflicients really
defines 2 equations with real coeflicients; now the space
of solutions of a system of 2 equations in a 4-dimen-
stonal space ought to be 2-dimensional, in general.

One can prove that, in fact, such a space X has the
following description. Punch an even number of
circular holes (say, 2g) in the surface of a (two-
dimensional) sphere; then attach g (hollow) cylinders to
the punctured sphere, so that each boundatry circle of
each cylinder exactly matches the boundary of one of
the holes; further, the cylinders do not intersect each
other, or the sphere (except along the bounding circles).
One obtains a surface without a boundary, which looks
like a sphere with g hollow cylindrical ‘handles’, also
called a g-heled torus. The number of handles 1s called
the genus of the surface. Finally, to obtain our space X,
one may have to pinch this surface in a finite number of
places; these are the ‘singulanties’ of X.

There are theorems which allow one to compute the
genus g of X by simple algebraic procedures starting
with the polynomial f(x, v); for a ‘general’ polynomial f
of degree d (i.e. when the space X has no singularities),
one has the formula

g={d-1)d—2)/2.

In general, one subtracts a positive correction term
which is a measure of the singularities'?,

Siegel's result states that if g> 0, then the Diophantine
equation f(x, y)>=0 has only a finite number of integer
solutions; further, even if g=0, only certain very special
equations can have infinitely many solutions.

The problem of finding all rational solutions to
Diophantine equations f(x, y)=0 1s harder. It turns out
that equations*” of genus 0 and 1 may have infinitely
many rational solutions. For equations of genus 0, one
can decide if this 1s the case by simple calculations
involving f, and Gauss’ quadratic reciprocity law.

‘However, it is a very difficult problem, and the subject
of much contemporary research on Diophantine
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equations, to prove such a criterion for equations of
genus 1. One knows that the solutions to an equation
of genus | form a group (after we add on a finite
number of ‘solutions at infinity’). An important result
due to Mordell 1s that this group is finitely generated.

For equations of genus =2, the Mordell Conjecture
asserts that there are only a finite number of rational
solutions. Thus, for. the Fermat equation

X"+ yt=1,

it turns out that there are no singularities, so that the
genus is

(n—1)(n=2)/2,

which is >2 if n>4. Thus the Mordell Conjecture
imphes that, for each n>4, the Fermat equation has
only a finite number of rational solutions.

The Mordell Conjecture was proved by the German
mathematician Gerd Faitings*® (now at Princeton
University), in 1983; he was awarded the Fields Prize
for this work n 1986, at the International Congress of
Mathematicians held at Berkeley, Californmia, in the
USA. As the reader may know, there 1s no Nobel Prize
in mathematics; however, there i1s the Fields Prize,
awarded every four years to two to four mathematicians
at the International Congress. One difference with the
Nobel Prize is that there is an age hmit: only
mathematicians below forty can qualify! The Fields
Prize is not nearly as large a sum of money as a Nobel
Prize, but of course it carries enormous prestige in the
mathematical community. Incidentaily, the Swedish
Academy has recently instituted a prize in mathematics,
the Crafoord Prize; the first persons to whom this was
awarded (in 1988) were Alexandre Grothendieck and
Pierre Deligne (both Fields Pnze winners). However
Grothendieck turned it down!?’

Faltings’ proof is quite difficult, using advanced
techniques from algebraic geometry and number theory
developed by many mathematicians (following ideas of
Grothendieck). However, one key step in the proofis an
argument reminiscent of Fermat’s method of infinite
descent, again involving the notion of heights. Fermat’s
Last Theorem has been verified for all values of n up to
100,000; however, Faltings’ result gives the best known
result vahd for all n. Of course, Fermat’s Last Theorem
concerns only one equation for each degree n, while
Faltings’ result applies to virtually all equations of
degree >=4.

Finally, we describe two recent developments relating
to Fermats Last Theorem. The first one is regarded by
some¢ number theorists as the first ‘real’ ¢vidence in
favour of the truth of Fermat’s assertion. There 1s a vast
program of research (it is too wide in scope to be called
a mere conjecture!) proposed by the Canadian born
mathematician Robert Langlands (now at the Institute
for Advanced Study in Princeton). Very roughly, this
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seeks to tie together the representation theory of Galois
groups of fields of algebraic numbers (like the field of
rationals), and Fourier analysis on so.called adele
groups, built out of real Lie groups and p-adic groups
(hke GL, (Q,), the group of n x n-invertible matrices of
p-adic numbers'®) for all primes p. Fourier analysis on
such groups is an active area of current research, which
is built on the tremendous work!® of Harish-Chandra,
arguably the greatest Indian mathematician after
Srinivasa Ramanujan,

Class field theory (the generalization of Gauss’
quadratic reciprocity found by Hilbert and others,
mentioned earlier), which includes a sizeable chunk of
all results in algebraic number theory until a few
decades ago, is reir.‘erpreted as the simplest case of the
Langlands program. This theory also generalizes the
theory of certain functions called modular forms, which
many number theorists have been interested in during
the last 100 years or so. For example, Ramanujan was
interested in the function (which is a modular form)
A(z)=q TT (1—¢"** (where g=exp (2niz));
n=1
one of his most famous conjectures®® about the Fourier
coefficients 7 (n}) of the function A(z) (which was
proved by Deligne in 1973} has been vastly generalized
by Langlands. There 1s a lot of recent research giving
impressive evidence 1n support of the Langlands
program*'.

One consequence of the theory 1s a certain property
of equations of genus I with rational coefficients, which
goes under the name of the Taniyama—-Weil Conjecture
(after the mathematicians Taniyama and Weil). Recently,
it has been observed by several mathematicians that
this conjecture implies Fermat’'s Last Theorem. The
idea 15 as follows—if a, b, ¢ are integers satisfying
a"+ b"=¢", one considers the cubic equation

y2=(x—a") (x—b") (x—-c")

Then one is able to show that this cubic has genus 1,
and would contradict the Taniyama-Weil Conjecture.
Since Taniyama and Weil are backed up by Langlands,
it seems unimaginable (to some) that Fermat's Last
Theorem could be false! The auxilliary cubic obtained
from a possible counterexample to the Fermat problem
is called the Frey curve, after the mathematician Frey
who first had the idea of studying this curve.

A variant of this method, again by considering the
Frey curve, 1s to try to obtain a contradiction using
another new topic in geometrical number theory, called
Arakelov theory. This theory originates in a paper of the
Soviet mathematician Arakelov??. Roughly speaking,
Arakelov exploits an analogy between the geometry of
surfaces and the theory of solutions of Diophantine
equations f(x, y)=0. A forerunner was the work of
Weil*?, formulating such an analogy between the
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theory of algebraic curves, and the study of solutions of
equations f(x)=0 in one variable, ie. of the rings of
algebrdic numbers we mentioned earlier.

There was much excitement in the mathematical
community when in 1988, a Japanese mathematician
announced that he could extend to the ‘Arakelov
situation’ a geometrical theorem about algebraic
surfaces which he had proved a few years earlier, and
that this yields Fermat’s Last Theorem. Unfortunately
the prool was incorrect. However, these methods could
still potentially lead to a proof.

Rational solutions of equations in 2 variables are
related to integer solutions of equations 1n 3 variables
(as in Fermat’s Last Theorem). What about integer
solutions of equations in >4 variables? In his famous
address to the International Congress of Mathematicians
in 1900 in Paris, Hilbert listed 23 outstanding problems
in different branches of mathematics, as a challenge to
future mathematicians®®. Hilbert’s 10th problem asks for
an algonthm (or systematic ‘mechanical’ procedure) for
deciding if a given Diophantine equation has a positive
mteger solution. Using methods of mathematical logic
(related to Godel’s famous incompleteness theorems, and
to certain techniques in modern theoretical computer
science), the Soviet mathematician Matijasevic, building
on work of Marfin Dawvis, Julia Robinson and Hilary
Putnam, showed that there is no such procedure®”.
Refinements of the proof show that such a decision
procedure is impossible for equations in 4 vanables!
Among the other striking consequences of this work,
Matijasevi¢ constructs an explicit polynomial f in 26

variables (named g,.b, . .. .z, of course!} such that for

any positive integer solution of

fla, b, ... z}=0,
a is a prime number, and every prime number occurs in
this way!

. See Hardy, G. H. and Wright, E. M., An Imtroduction to the
Theory of Numbers, 4th edn, Oxlord, 1960; and Weil, A., Number
Theory. An Approach Through History, ‘from Hammurapi to
Legendre’, Birkhduser Boston, 1983, for historical background and
further references.

2. See Weil, A, foc. cit., Chapter 1.

3. See Edwards, H. M., Fermat’s Last Theorem: A Genetic
Introduction to Algebraic Number Theory, Grad. Texts (n Math,
No. 50, Springer-Verlag, New York, 1977.

4. Bell, E. T., Men of Mathematics, Simon and Schuster, New York,
1965.

5. Weil, A., loc. cir.

6. Edwards, H. E., loc. cit,

7. Jungk, R., Brighter than a Thousand Suns, Penpguin Books Ltd.
1964.

8. Use the substitution w=z%.

9. Weil (loc. cit.) states that the majority of Fermat's work on
Diophantine equations was concerned with the systematic study
of equations of genus 0 and | {see Notes 14, 15 for genus). Thus
Fermat initiated the ‘theory’ of these equations.

10. See Hardy, G. H. and Wright, E. M., loc. ¢it., Sectien 3.5,
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2.

13.

14,

15.
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It is kmown that 2''?Y-—1 is a prime; granting this, the
verification of this statement using quadratic rectprocity took the
author less than 10 minutes of computation, without a calculator;
essentially, one must compute the remainder obtained on dividing
2112151 by 163, the discriminant in this case.

For the algebraic number theory needed to perform the above
calculations, see any one of the following books:

Borevich, Z. 1. and Shafarevich, 1. R., Number Thecry, Pure and
Applied Mathematics, Vol. 20, Academic Press, New York, 1966;
Marcus, J. A., Number Fields, Universitext, Springer-Verlag, New
York, 1977; Serre, J. -P., A Course in Arithmetic, Grad. Texts in
Math., No. 7, Springer-Veriag, New York, 1978 (also available in
[nternational Student Edition, Narosa, New Delhi, 1979); Marcus’
book also contains an introduction to class field theory.

Thue showed that if « is a root of f(z, 1}=0, and C is any positive
constant, then there 1s an explicit positi»e number C, (&, C} such
that there 15 at most one solution of

P
g—= —

q

<=
4

1

with max {|p], |g))> C,; hence this inequality has only a finite num-
ber of solutions. But one is unable to decide if this exceptional
approximation exists, so on¢ cannot explicitly bound all the
solutions of the Diophantine equation, using Thue's method.
Thus, one 15 unable to run a computer program to test all
integers p, ¢ with {p|, lg|<D for an explicit constant D,
computabie directly from the equation, to get 2 complete list of
solutions of our Diophantine equation. But one could (in
principle) do this to obtain a list of solutions, such that at most 4
solutions are missing {one for each root «,). This state of affairs is
expressed by saying that Thue’s method is not gffective.

An effective decision procedure for finding solutions of certain
Diophantine equations (including the Thue equation, but not the
more general equations considered by Siegel) has been found by
Baker and others; see Baker, A., ‘Transcendenial Number Theory’,
Cambridge Univ. Press, Cambridge, 1975.

See Hartshorne, R., Algebraic Geometry, Grad. Texts in Math.
No. 52, Springer-Verlag, New York, 1977, for results on algebraice
curves, genus, ete.

We refer 10 the genus of the underlying Riemann surface of

complex solutions as the genus. of the equation. Equations of
genus | describe elfiptic curves; see Silverman, J. H., The
Arithmeric of Elliptic Curves, Grad. Texts in Math. No. 106,
Springer-Verlag, New York, 1986, for an introduction, and a
survey of current research on Diophantine properties of elliptic
Curves. |

16.

17.

18.

19.

20.

21,

23,

24.

25.

Faltings, G., invent. Math., 1983, 73, 349; see also Cornell, G. and
Silverman, J. H. {eds), Arithmetic Geometry, Springer-Verlag, New
York, 1986, which containg a translation of Faltings article into
English, background for that article, as well as other related
material.

A translation of Grothendieck’s letter to the Swedish Academy,
explaining the reasons for his refusal, can be found in the
Mathematical Intelligencer, 1988,

See Varadarajan, V. S. (ed), Harish-Chandra, Collected Papers,
Springer-Verlag, New York, 1983 {(an Indian cdition is published
by Narosa, N. Delhi, 1985, Harish-Chandra was Langland’s
colleague at the [nstitute for Advanced Study in Princeton, until
his death in 1983; Langlands has written an obituary for Harish-
Chandra, which makes fascinating reading—see Langlands, R. P.,
‘Harish-Chandra’, Biog. Mem. Fellows of Royal Soc. 1985, 31,
199.

See any of the books mentioned in Note 12 for the definition and
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