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be a fifteen-digit number such that 10*{N, 10*/ N. But
N is generated by 8(9),,6880.

Also, (8)5(9)s000, 40{9),,000 are generated Dby
{8)5(9)58890 and 40(9),8890 respectively.

The above examples show that theorem (1) 1s not
true for numbers > 10'° though they satisfy all other
given conditions. In other words, I have indirectly
shown that this theorem cannot be extended further
without imposing extra conditions.

Proof of theorem (2)

—
b3

Let N=) a; 10 (2.1)

1=4
where 0<a, <9, 0<a; <9, fori=3to 12
(. d(N)<T4) and d(N)=8(mod [1).
If possible, let it be generated by

12
M=) b 10" (2.2)
=0
where 0<b, <9 and b, #0 for at least one i =0 to 12.
N=M+d(M)
12
=Y b,(10°+1). (2.3)
1=0

Since [0*| N, i.e. N =0 (mod 10%),
12
S b+ 1000b, + 100b, + 10b, + by = 0{mod 10*).

i=4{

12
Y b+ 1000, + 1005, + 106, + by = 10“
L= {)

24
Substituting (2.4) in (2.3), we get 9
N=b - 10" +b, 10"+ .
where b, + 150 for 10* { N.
Hence, from (2.1) and (2.5),
a,=bh, for 5€ig12 (2.6)
and a, =h, + 1.
Again, from (2.4) and (2.6) we get,
d(NY+1001b, + 101b, +11b, +2by= 10001,
(2.7)

CH (b, + DI04, (2.5)

by + b, =8(mod 11).
Since 0< by + b, < 18, we must have by + b, =38
=h, <8 and b, <8
From (2.7),
1000l =d(N)+ 1001 by +99b, + 116, +2(b, +b;)
<74+ 9008 4 (99 X 8} + 99 + 16 = 9980,
which 1s false.

Therefore, b, +b,=8 is also not possible, which
shows that the solution of (2.1) for equation (2.3) does
not exist.

This completes the proof of theorem (2).

Counterexamples outside the range O SN < 10"’

For a number N, d{N)=8(mod 11) such that 10%N,
10°¢ N, and if 4(N) is at most 74, only then is it a self-
number. In this case, since d(N)=74, N can be placed

9%

in at most 13 digits. Hence the range of N is the
theorem is 0 < N < 103, Beyond this range, though the
number satisfies all other conditions, it may not be a
self-number. To show this I give the following counter-
examples. Here (a), means a repeated k times in a row.

Example 1. Let N =(9)4850000, d(N)=8§5=8(mod 11)
be such that 10*|N, 10°f N. But N is generated by
(9), 849890,

Example 2. Let N ={9},,60000, d(N)=96=8(mod 11)
be such that 10°|N, 10°f N. But N is generated by
(9),.459880.

Example 3. Let N=6(%¢52(0),, d{N)=85=8(mod 11)
be such that 10°[N, 10°f N. But it is generated by
M = 6(9); 519890.

Thus the above examples show that theorem (2) is
not true for numbers > 10", though they satisfy all the
other given conditions.

In other words, I have shown that this 1s the best
possible range.
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We discuss how the presence of frustration brings about
irregular behaviour in a pendulum  with nonlinear
dissipation. Here frustration arises owing to the
particular choice of the dissipation. A preliminary
numerical analysis is presented which indicates the
transition to chaos at low frequencies of the driving force.

FRUSTRATION 15 a phenomenon encountered in systems
with two competing interactions’. In many physical
systems such as magnetic systems?, amorphous pack-
ing, random networks and neural systems, frustration
leads to interesting and novel consequences®. In this
paper we introduce a system in which the presence of
frustration precedes the transition to chaotic behaviour.
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The system we consider is a nonlinear pendulum X —
driven by a sinusoidal force and subjected to a damping - A
that depends both on the velocity and the coordinates.
The onset of chaotic behaviour in such a system has 1
been studied recently* using Melnikov analysis as well 2
as numerical methods. However, it appears that the bﬁﬁ’i‘iﬁ
route to chaos in such a system is not clearly I ;ﬂl\
understood. In this communication we discuss how S5 PR,
nonlinear dissipation is of crucial significance in the ::{; £
origin of frustration and irregular behaviour in this X i ' Ton
system. ? “’;g;? F

An ordinary pendulum, with the usual type of dissi- 5 S
pation 1n which the dissipative term depends linearly on ‘*:%ﬂé; -,,,':l"“ﬂﬁ
velocity, has been studied extensively’. Such a system is E:\ ..#‘;"i;,'ff
described by an equation of motion, B ~

%= ~sinx— g%+ A sin ot. (1) =

This 15 found to undergo a cascade of penod-doubling ;,
bifurcations, which 1s generic, occurring m both the

osctllating and rotating regimes. Chaotic behaviour also
arises as a result of random transitions between two Figure 1. The frustrated limit cycle of the nonlnear pendulum lo
phase-locked states that have Become unstable. In this w=04, g=0.2 and 4 =0.2

system, it is the interplay between the driving force and

damping term that leads to limit cycles as well as 0 e 1 i

phase-locked states, which then undergoes perod
doubling.
The limit-cycle behaviour is considerably altered
when we consider a system that is described by the |
equation ' \L
N wy
VA
L=

behaviour. As the system evolves in time, whenever |x| _
increases beyond 1, the dissipation due to the second —2.4 4 ‘ ' e SR DRI S
term brings the trajectory inwards, decreasing the value 0 ~ Frequency Lt
of x below 1. Then, instead of dissipation, we have a Figure 2. Power spectrum using FIFT corresponding to e {34
growing solution taking the system to values of x above =~ 9 =92 and 4 =0.2
1. For low values of the driving amplitude and
frequency, the system therefore does not settle down to  Table 1. We find that A,,, becomes positive at 4 - .21,
any limit cycle asymptotically but goes over a set of None of the general routes to chaos with which we
trajectories resulting in a band-like himit cycle, which  are familiar seems to describe this transition, Increasing
we call ‘frustrated limit cycle’. In Figure 1, we illustrate  the value of A increases the frustration in the system, as
this for values of w=04, A=0.2 and ¢g=10.2. indicated by the presence of additional frequencies in

The power spectrum, obtained using the fast Fourier ~ FFT and positive Lyapunov exponent. This can finaily
transform (FFET) corresponding to these values of o, A  lead to chaotic behaviour before the trajeclory escupes
and g, shows four domimant but broad peaks (Figure 2). from the first potentional well. This type of behaviour is
This is in contrast to the FFT for quasiperiodic motion,  found to occur in the frequency range 0.08 < (o< 1,
which gives rise to sharp peaks. The broadening of the =~ When w>1 the frustrated Iimit cycle exists for small
peaks arises as a result of the band-like nature of the  values of 4. As A is increased, the band splits up into
limit cycle. As A is increased additional peaks appear in ~ periodic cycles. However, this is not followed in any
the FFT, indicating the presence of more frequencies,  sequence and only isolated periodic bands are observed.
and at A=0.26 we have a chaotic power spectrum  For large enough values of A, the system asymptotically

(Figure 3). We calculated the maximum Lyapunov  settles down to a limit cycle with the periodicity of the
exponent /... The variation of 4., with 4 is given in  applied force.

&= —sinx—gx(x*— 1)+ Asin ot. (2)

It is clear from (2) that the nature of the velocity-

dependent term 1s decided by whether |x]>1 or x| <1, x
changing sign as it crosses the value of unity. This *
change of sign causes qualitatively different asymptotic
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Figure 3. Power spectra showing that as A s Increased additional (requencies appear in the system, In b (4 =0.26), the system

shows chaotic behaviour.

We feel that the frustration makes the system
extremely sensitive to changes in the external para-
meters, so that a small change in the control parameter
can drive the system to the chaotic state. More detailed
investigations are mnecessary before one can make

Table 1. The maximum Lyapunov
exponent i_. [or the system when
w=04, 9g=0.2, and A 15 vaned.

A A

"Mux

0.15 ~2.338065 % 10°3
0.2 —6.341918 % 14 ~*
0.21 5757624 x 10~*
0.22 1.253144x 1073
0.24 1.979667x 103
0.26 3.467343x 1073
0.28 355532 % 103

0.3 4432041 % 1073

definite predictions regarding the nature of the
transition to chaos. We are currently investigating this
and the results will be presented elsewhere.
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We have carried out systematic measurements of *'Pb
fallout over a period of about 100 years at Dye-3 station
in Greenland using a precisely dated 77-m deep ice core.
The core was dated using data on annual cyclic
variations in 8130, artificial radioactivity and elevated
levels of acidity due to major volcamic eruptions. The
results indicate that the fallout of 2'*Pb has not remained
constant over the last century and was higher by a factor
of about two daring 1885-1920 than in 1920-1975,
Possible causes for the changes in fallout due to volcanic
eruptions and nuclear explosions are discussed. If the
observed trend is valid on a global scale, it raises serious
doubts about the basic assumption of *'°Pb geochronology.

Past records of climatic changes, atmospheric and
nuclear fallouts, volcanic debris and a wealth of
other information are preserved systematically in polar
glaciers and ice sheets. Favourable areas for studying
such deposition events are the high-latitude regions of
large ice sheets, such as Greenland in the northern
hemisphere, which is fed by relatively frequent and
heavy snowfalls'. Greenland ice cores are most suitable
for dating the annual layers of snow deposition using
very sensitive 6°°0 and past-acidity records®. The
natural *'9Pb background in Greenland being low
compared to that in other locations in the northern
hemisphere because of its remoteness from natural
sources, 1t 1S easy to observe even small changes n the
deposition flux of *'°Pb caused by natural or artificial
events, such as volcanic eruptions or thermonuclear
explosions. Analytical study of a well-dated core from
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