Validity of tests of self-numbers

R. B. Patel

Arts, Science and Commerce College, Shahada 425 409, India

Self-numbers were defined by Kaprekar as numbers M having no solutions in N for the equation M = N + d(N), where d(N) is the sum of digits of N, when represented in the decimal scale. In this paper I describe certain tests for numbers of the form $A \cdot 10^n$ where A and n are natural numbers, and examine to what extent the tests remain valid.

LET d(N) denote the sum of the digits of N, when N is represented in the usual decimal scale. If a natural number M does not have any solution for the equation

$$M = N + d(N)$$

in natural numbers, then M is said to be a self-number. If M = N + d(N) for some natural number N, then M is said to be a generated number and in this case N is called the generator of M. Equivalently, N generates M.

For example 20 is a self-number. The initial self-numbers are 1, 3, 5, 7 and 9. The number 21 is not a self-number as 15 generates 21. Some numbers may have more than one generator; the number 101 has two generators, viz. 91 and 100.

The concept of self-numbers was introduced by Kaprekar¹ more than twenty years ago. He described many conjectures about self-numbers, among which: If a number ends in 00 but does not end in 000, i.e. it is a multiple of 100 and not a multiple of 1000, and if d(N) is 4, 15, 26, 37, then N is a self-number.

Vaidya² showed that this conjecture is not valid in general by producing counterexamples. But Vaidya also conjectured that Kaprekar's tests for self-numbers are true for all natural numbers $< 10^{11}$. Joshi³ proved that if $10^2 | N, 10^3 \nmid N, d(N) \equiv 4 \pmod{11}$ and $0 < N < 10^{11}$, then Kaprekar's conjecture is valid.

In this paper I describe similar tests for self-numbers and show to what extent they remain valid. Actually, I prove the following:

THEOREM 1: If $0 < N < 10^{13}$, $10^3 | N, 10^4 | N, d(N) \equiv 6 \pmod{11}$, then N is a self-number.

THEOREM 2: If $0 < N < 10^{13}$, $10^4 | N$, $10^5 \nmid N$, $d(N) \equiv 8 \pmod{11}$, then N is a self-number.

I describe the proofs of theorems (1) and (2) and show that the range of validity for these tests of self-numbers cannot be extended without imposing an extra condition. This I do by producing suitable counter-examples.

The method is elementary and the results are obtained by considering simple congruence relations modulo 11 and deducing contradictions from them.

Proof of theorem (1)

Let
$$N = \sum_{i=3}^{12} a_i \cdot 10^i$$
, (1.1)

where $0 \le a_i \le 9$ for i = 3 to 12, $a_3 \ne 0$, (... $d(N) \le 83$), and $d(N) \equiv 6 \pmod{11}$.

If possible, let it be generated by

$$M = \sum_{i=0}^{12} b_i \cdot 10^i, \tag{1.2}$$

where $0 \le b_i \le 9$ and $b_i \ne 0$ for at least one i = 0 to 12... N = M + d(M)

$$= \sum_{i=0}^{12} b_i (10^i + 1). \tag{1.3}$$

Since $10^3 | N$, i.e. $N \equiv 0 \pmod{10^3}$,

$$\sum_{i=0}^{12} b_i + 100b_2 + 10b_1 + b_0 \equiv 0 \pmod{10^3}$$

$$\sum_{i=0}^{12} b_i + 100b_2 + 10b_1 + b_0 = 10^3.$$
 (1.4)

Substituting (1.4) in (1.3), we get

$$N = b_{12} \cdot 10^{12} + b_{11} \cdot 10^{11} + \dots + (b_3 + 1)10^3,$$
(1.5)

where $b_3 + 1 \neq 10$ for $10^4 / N$.

Hence, from (1.1) and (1.5),

$$a_i = b_i \qquad \text{for } 4 \leqslant i \leqslant 12 \tag{1.6}$$

and $a_3 = b_3 + 1$.

Using (1.6) in (1.4), we get

$$d(N) + 101b_2 + 11b_1 + 2b_0 = 1001. (1.7)$$

Taking congruence modulo 11 on both sides, we get

$$b_0 + b_2 \equiv 8 \pmod{11}$$
.

But $0 \le h_0 + h_2 \le 18$.

$$h_0 + h_2 = 8$$

$$\Rightarrow b_2 \leq 8 \pmod{b_0 \leq 8}$$
.

From (1.7),

a row.

$$1001 = d(N) + 99 b_2 + 11 b_1 + 2(b_0 + b_2)$$

 $\le 83 + (99 \times 8) + 99 + 16 = 990$, which is false,

showing that $b_0 + b_2 = 8$ is not possible.

Therefore, solution of (1.1) for equation (1.3) does not exist. Thus, theorem (1) follows.

For a number N, $d(N) \equiv 6 \pmod{11}$ such that $10^3 | N$, $10^4 \nmid N$, and if d(N) is at most 83, only then is it a self-number. Thus, if d(N) = 83, then such number N can be placed in at most 13 digits. Hence the range of N in the theorem is $0 < N < 10^{13}$. Beyond this range the theorem does not hold good. To show this I give the following

Example 1. Let $N = (9)_{10}4000$, $d(N) = 94 \equiv 6 \pmod{11}$ be a fourteen-digit number such that $10^3 | N$, $10^4 \nmid N$. But N is not a self-number as it is generated by $M = (9)_{10}3890$.

counterexamples. Here $(a)_k$ means a repeated k times in

Example 2. Let $N = 8(9)_{10}7000$, $d(N) = 105 \equiv 6 \pmod{11}$

be a fifteen-digit number such that $10^3 | N$, $10^4 \nmid N$. But N is generated by $8(9)_{10}6880$.

Also, $(8)_5(9)_6000$, $40(9)_{10}000$ are generated by $(8)_5(9)_58890$ and $40(9)_98890$ respectively.

The above examples show that theorem (1) is not true for numbers $> 10^{13}$ though they satisfy all other given conditions. In other words, I have indirectly shown that this theorem cannot be extended further without imposing extra conditions.

Proof of theorem (2)

Let
$$N = \sum_{i=4}^{12} a_i \cdot 10^i$$
, (2.1)

where $0 < a_4 \le 9$, $0 \le a_i \le 9$, for i = 5 to 12 $(:: d(N) \le 74)$ and $d(N) \equiv 8 \pmod{11}$.

If possible, let it be generated by

$$M = \sum_{i=0}^{12} b_i \cdot 10^i, \tag{2.2}$$

where $0 \le b_i \le 9$ and $b_i \ne 0$ for at least one i = 0 to 12. N = M + d(M)

$$= \sum_{i=0}^{12} b_i (10^i + 1). \tag{2.3}$$

Since $10^4 | N$, i.e. $N \equiv 0 \pmod{10^4}$,

$$\sum_{i=0}^{12} b_i + 1000b_3 + 100b_2 + 10b_1 + b_0 \equiv 0 \pmod{10^4}.$$

$$\therefore \sum_{i=0}^{12} b_i + 1000b_3 + 100b_2 + 10b_1 + b_0 = 10^4.$$

Substituting (2.4) in (2.3), we get

$$N = b_{12} \cdot 10^{12} + b_{11} \cdot 10^{11} + \dots + (b_4 + 1)10^4, (2.5)$$

where $b_4 + 1 \neq 0$ for $10^4 \nmid N$.

Hence, from (2.1) and (2.5),

$$a_i = b_i \quad \text{for } 5 \leqslant i \leqslant 12 \tag{2.6}$$

and $a_4 = b_4 + 1$.

Again, from (2.4) and (2.6) we get,

$$d(N) + 1001b_3 + 101b_2 + 11b_1 + 2b_0 = 10001.$$

 $b_0 + b_2 \equiv 8 \pmod{11}$.

Since $0 \le b_0 + b_2 \le 18$, we must have $b_0 + b_2 = 8$ $\Rightarrow b_0 \le 8$ and $b_2 \le 8$.

From (2.7),

$$10001 = d(N) + 1001 b_3 + 99 b_2 + 11 b_1 + 2(b_0 + b_2)$$

$$\leq 74 + 9009 + (99 \times 8) + 99 + 16 = 9980,$$

which is false.

Therefore, $b_0 + b_2 = 8$ is also not possible, which shows that the solution of (2.1) for equation (2.3) does not exist.

This completes the proof of theorem (2).

Counterexamples outside the range $0 \le N \le 10^{13}$

For a number N, $d(N) \equiv 8 \pmod{11}$ such that $10^4 | N$, $10^5 \nmid N$, and if d(N) is at most 74, only then is it a self-number. In this case, since d(N) = 74, N can be placed

in at most 13 digits. Hence the range of N is the theorem is $0 < N < 10^{13}$. Beyond this range, though the number satisfies all other conditions, it may not be a self-number. To show this I give the following counter-examples. Here $(a)_k$ means a repeated k times in a row.

Example 1. Let $N = (9)_8 850000$, $d(N) = 85 \equiv 8 \pmod{11}$ be such that $10^4 | N$, $10^5 \nmid N$. But N is generated by $(9)_8 849890$.

Example 2. Let $N = (9)_{10}60000$, $d(N) = 96 \equiv 8 \pmod{11}$ be such that $10^4 | N$, $10^5 \nmid N$. But N is generated by $(9)_{10}59880$.

Example 3. Let $N = 6(9)_8 52(0)_4$, $d(N) = 85 \equiv 8 \pmod{11}$ be such that $10^4 | N$, $10^5 \nmid N$. But it is generated by $M = 6(9)_8 519890$.

Thus the above examples show that theorem (2) is not true for numbers $> 10^{13}$, though they satisfy all the other given conditions.

In other words, I have shown that this is the best possible range.

- 1. Kaprekar, D. R., The Mathematics of the New Self-Numbers, Devlali, 1963, p. 19.
- 2. Vaidya, A. M. Math. Stud., 1969, 37, 212.
- 3. Joshi, V. S., Math. Stud., 1971, 39, 327.

ACKNOWLEDGEMENTS. I thank Dr V. S. Joshi, Reader, Department of Mathematics, South Gujarat University, Surat, for encouragement.

10 April 1989; Revised 31 August 1989

(2.4)

(2.7)

Frustrated limit cycle and irregular behaviour in a nonlinear pendulum

G. Ambika and V. M. Nandakumaran*

Department of Physics, Maharaja's College, Cochin 682 011, India *Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India

We discuss how the presence of frustration brings about irregular behaviour in a pendulum with nonlinear dissipation. Here frustration arises owing to the particular choice of the dissipation. A preliminary numerical analysis is presented which indicates the transition to chaos at low frequencies of the driving force.

FRUSTRATION is a phenomenon encountered in systems with two competing interactions¹. In many physical systems such as magnetic systems², amorphous packing, random networks and neural systems, frustration leads to interesting and novel consequences³. In this paper we introduce a system in which the presence of frustration precedes the transition to chaotic behaviour.