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Self-numbers were defined by Kaprekar as numbers M
having no solutions in /N for the equation M= N+ d(N),
where d(N) is the sum of digits of /N, when represented
in the decimal scale. In this paper I describe certain tests
for numbers of the form A-107 where 4 and i are natural

numbers, and examine to what extent the tests remain
valid.

LET d(N) denote the sum of the digits of N, when N 15
represented in the usual decimal scale. If a natuoral
number M does not have any solution for the equation

M =N +d(N}

in natural numbers, then M is said to be a self-number.
If M =N+ d(N} for some natural number N, then M 18
said to be a generated number and i this case N is
- called the generator of M. Equivalently, N generates M.

For example 20 is a self-number. The nitial self-
numbers are [, 3, 5, 7T and 9. The number 21 1s not a
sel-number as 15 generates 21. Some numbers may
have more than one generator; the number 101 has two
generators, viz. 91 and 100.

The concept of sell-numbers was introduced by
Kaprekar! more than twenty years ago. He described
many conjectures about self-numbers, among which: If

a number ends in 00 but does not end in 000, 1¢. 1t 15 a
multiple of 100 and not a multiple of 1000, and if d{N)

is 4, 15, 26, 37, then N is a self-number.

Vaidya® showed that this conjecture is not valid in
general by producing counterexamples. But Vaidya also
conjectured that Kaprekar’'s tests for self-numbers are
true for all natural numbers < 10", Joshi® proved that
if 10%|N, 103/ N, d(N)=4{mod 11} and O<N <10'!,
then Kaprekar’s conjecture is valid.

In this paper [ describe similar tests for self-numbers
and show to what extent they remain valid. Actually, |
prove the following

THecrREM 10 If O0<N<10¥3, 103N, I0%N,d(N)=
6(mod 1!}, then N is a self-number,

THEOREM 2 IfO<N<10* I0%*IN, 10°f N, d(N )=
8¢(mod 11 ), then N is a self-number.

I describe the proofs of theorems (1) and (2) and
show that the range of validity for these tests of self-
numbers cannot be extended without imposing an extra
condition. This I do by producing suitable counter-
exampiles.

The method is elementary and the results are
obtained by considering simple congruence relations
modulo 11 and deducing contradictions from them.
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Proof of theorem (1)

12
Let N= Z a;* 10, (1.1
[=13
where 0<g, <9 for i=3 to 12, a, #0, (.". d(N)<8&3),
and d(N)=6(mod 11).
If possible, let it be generated by

12
M=Y b-10} (1.2)
i=0
where 0< b, €9 and b; 50 for at least one i=0 to 12..
N= M-+ d(M]
12
=Y b(10'+ 1). (1.3)
i=0
Since 10?|N, i.e. N=0(mod 10°),
12
Y b;+ 1006, + 10b, + b, =0(mod 10°)
=
12
Y. b+ 100b,+ 106, + by = 107, (1.4)
i=0
Substituting (1.4) in (1.3), we get
J'\J:bll.lol‘z_!-bll ) lOll”l" . "I"{b3 + 1)1031
(1.5)
where b, +1 #10 for 104N,
Hence, from (1.1) and (1.5},
;= b, for 4<ig12 {1.6)
anda; = b, + 1,
Using (1.6) in (1.4), we get
d(N)+ 101b,~+ 11h, +2b, = 110L, (1.7)

Taking congruecnce modulo 11 on both sides, we get
ho+ b, =8(mod 11).
But 0 h,+b, <18

by + by =8
=h, €8 (and b, €£8).
From (1.7),

1001 =d(N)Y+99bh, +11b,+ 2(hy + b-)
<B3I+ (99 x )+ 994 16 =990, which is false,
showing that b, + b, = 8§ is not possible,
Therefore, solution of (1.1) for equation (1.3) does not
exist, Thus, theorem (1) follows.

Counterexamples outside the range 0<N < 1013

For a number N, d(N)=6(mod 11) such that 10°| N,
104N, and if d(N) is at most 83, only then is it a self-
number. Thus, if d(N)}= 83, then such number N can be
placed in at most 13 digits. Hence the range of N in the
theorem is 0< N < 10'°, Beyond this range the theorem
does not hold good. To show this I give the following
counterexamples. Here (a), means a repeated k times in
a 10w,

Example 1. Let N =(9),,4000, 4(N)=94=6(mod 11)
be a fourtsen-digit number such that 103 N, 10*/'N.

But N is not a sell-number as it 15 generated by
M = (9),,3890.

Example 2. Let N=28(9),,7000, 4(N)=105=6{mod 11}
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be a fifteen-digit number such that 10*{N, 10*/ N. But
N is generated by 8(9),,6880.

Also, (8)5(9)s000, 40{9),,000 are generated Dby
{8)5(9)58890 and 40(9),8890 respectively.

The above examples show that theorem (1) 1s not
true for numbers > 10'° though they satisfy all other
given conditions. In other words, I have indirectly
shown that this theorem cannot be extended further
without imposing extra conditions.

Proof of theorem (2)

—
b3

Let N=) a; 10 (2.1)

1=4
where 0<a, <9, 0<a; <9, fori=3to 12
(. d(N)<T4) and d(N)=8(mod [1).
If possible, let it be generated by

12
M=) b 10" (2.2)
=0
where 0<b, <9 and b, #0 for at least one i =0 to 12.
N=M+d(M)
12
=Y b,(10°+1). (2.3)
1=0

Since [0*| N, i.e. N =0 (mod 10%),
12
S b+ 1000b, + 100b, + 10b, + by = 0{mod 10*).

i=4{

12
Y b+ 1000, + 1005, + 106, + by = 10“
L= {)

24
Substituting (2.4) in (2.3), we get 9
N=b - 10" +b, 10"+ .
where b, + 150 for 10* { N.
Hence, from (2.1) and (2.5),
a,=bh, for 5€ig12 (2.6)
and a, =h, + 1.
Again, from (2.4) and (2.6) we get,
d(NY+1001b, + 101b, +11b, +2by= 10001,
(2.7)

CH (b, + DI04, (2.5)

by + b, =8(mod 11).
Since 0< by + b, < 18, we must have by + b, =38
=h, <8 and b, <8
From (2.7),
1000l =d(N)+ 1001 by +99b, + 116, +2(b, +b;)
<74+ 9008 4 (99 X 8} + 99 + 16 = 9980,
which 1s false.

Therefore, b, +b,=8 is also not possible, which
shows that the solution of (2.1) for equation (2.3) does
not exist.

This completes the proof of theorem (2).

Counterexamples outside the range O SN < 10"’

For a number N, d{N)=8(mod 11) such that 10%N,
10°¢ N, and if 4(N) is at most 74, only then is it a self-
number. In this case, since d(N)=74, N can be placed

9%

in at most 13 digits. Hence the range of N is the
theorem is 0 < N < 103, Beyond this range, though the
number satisfies all other conditions, it may not be a
self-number. To show this I give the following counter-
examples. Here (a), means a repeated k times in a row.

Example 1. Let N =(9)4850000, d(N)=8§5=8(mod 11)
be such that 10*|N, 10°f N. But N is generated by
(9), 849890,

Example 2. Let N ={9},,60000, d(N)=96=8(mod 11)
be such that 10°|N, 10°f N. But N is generated by
(9),.459880.

Example 3. Let N=6(%¢52(0),, d{N)=85=8(mod 11)
be such that 10°[N, 10°f N. But it is generated by
M = 6(9); 519890.

Thus the above examples show that theorem (2) is
not true for numbers > 10", though they satisfy all the
other given conditions.

In other words, I have shown that this 1s the best
possible range.
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We discuss how the presence of frustration brings about
irregular behaviour in a pendulum  with nonlinear
dissipation. Here frustration arises owing to the
particular choice of the dissipation. A preliminary
numerical analysis is presented which indicates the
transition to chaos at low frequencies of the driving force.

FRUSTRATION 15 a phenomenon encountered in systems
with two competing interactions’. In many physical
systems such as magnetic systems?, amorphous pack-
ing, random networks and neural systems, frustration
leads to interesting and novel consequences®. In this
paper we introduce a system in which the presence of
frustration precedes the transition to chaotic behaviour.
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