Current Science, November 5, 1989, Vol. 58, No. 21

1181

ARTICLES

COMMENTS ON THE BENOFY AND QUAY THEORY OF
THERMOMAGNETIC EFFECTS

C. G. JESUDASON
Present address: Department of Chemistry, University of Malaya, Pantai Valley 59100 Kuala Lumpur, Malaysia

ABSTRACT

The claim by Benofy and Quay that Fourier’s inequahty (J,- VT <0) contains a further
thermodynamic principle beyond that contained in the Second Law of Thermodynamics is
investigated. It is shown that the inequality is not in contradiction with the usual assumptions of
linear irreversible thermodynamics, and when properly interpreted, the inequality 1s not violated
as is claimed. It is not necessary to postulate a ‘change in matenal coefficients’ for thermo-

electrical phenomena.

INTRODUCTION

ENOFY and Quay (henceforth abbreviated BQ)?
Bclaim that Fourier’s inequality J - VT <0, where
J, is the heat current vector and T the temperature,
contains a further thermodynamical principle
beyond that contained 1n the Second Law of
Thermodynamics. BQ explicitly state that their
treatment refers to conductive heat only in an early
part of their paper?, and in this respect there may
well be (within the classical, non-statistical conti-
nuum scheme) some validity in their arguments,
However, later in their paper there is a tendency to
treat this form of heat as the only form of thermal
energy flux.

It 1s (as will be shown} this failure to recognize
other forms of thermal energy flow that has led BQ
to misunderstand such works as Callen’s Linear
Irreversible Thermodynamics (LIT) formulation of
magnetothermoelectric effects’. They seem to have
misunderstood that while Callen’s equations predict
non-zero i1sothermal heat currents, such currents are
due to ‘heat of transport’ and not conductive heat,
and therefore do not violate Fourier's inequality,
which refers to conduction alone. By ‘heat of
transport’ is meant the thermal energy transported
by a current of particles as discussed following
equation (2) below and also in Callen's article’, This
misunderstanding is evident in their objection to
Callen's equations requiring that heat should flow in
the absence of a temperature gradient due to the
‘mutual interference of heat flow and electne current
flow in a system'>> Furthermore, BQ scem to

imply that the LIT ‘coupling’ of various forces and
fluxes are the root of the problem regarding
violations of the Fourier inequality.

“But, unlike previous workers in this area, we do
not ‘couple’ the equations themselves by adding any
term depending on  electric field to Fourer’s
equation or on¢ depending on thermal gradient to
Ohm’s Law. For, it 1s such ‘couplings’ that generate
theoretical violations of Fourier’s inequality. Rather,
we add one further equation, long known in its
rudimentary form, which ‘Couples’ the two gradients
in such a way as to give the full set of empirically
observable relations while maintaining Fourier’s
Principle intact.”

THE INTERPRETATION OF LIT AND THE
CONNECTION TO THE BQ THEORY

It must be understood that in LIT heat processes
involve both conductton by a ‘medium’ and
transport by particle currents. In the case of the
treatment of magnetothermoelectric eflects by Callen
and BQ, the mcdium 1s a flat, uniform {metallic)
conductor. Taking the simplest possible case,
consider the LIT expression for a one-dimensional
flow of heat and an electric current® 7 in an electrical
conductor given by the cquations:

Jt= - VvT/T*~L VE/T, (1)
J, ==L .VE/T-L,VT/T? (2)

where we have neplected {as with Callen) the
concentration of the ¢lectrons und only consider the
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electrical potential term E, the temperature 7 and
their respective gradients as componeants of the force.
The L’s are the temperature-dependent coupling
coefficients. J, represents the electrical current flow
vector and J.°' the thermal energy flow vector,
where we have written J.°' as a sum with contri-
butions from the thermal {non-conductive thermal
transport energy flow due to electrons, i.e. heat of
transport) J'@" and a Fourier-like conductive heat
flow term J; defined respectively by the equations:

JAS = -1 VE/T (3)
and
Jo=—L VT[T

It can be shown® that
~L VE/T=¢TK,VE, (4]

and n the absence of a thermal gradient, J,=
—~ K,VE, so that

Jtm‘?}“={} - J';rans -— ﬁTJ, (5)

|

where €7 is neither more nor less than the thermal
energy per unit current (K, is the electrical
conductivity) per unit area.

Equations (1) and (2) are first order local
equations. If there is conversion, 1e. dissipation
where the electrical potential work is dissipated as
heat to the lattice, then local heating would cause a
near instantaneous temperature change in the lattice
so that the resulting temperature gradient would
cause heat to flow by a lattice conductive mecha-
nism as given in (1). There 18 no reason why (1)
would preclude the possibility of conductive heat
and thermal energy of transport from moving in
opposite directions.

With the assumption of ‘Jocal equiibrium’ n LIT
as a basic postulate’, we can interpret T in (5) as the
local temperature and ¢=¢(T) as a locally defined
Seebeck coefficient which will of course depend not
only on the temperature but also on the nature of
the mediom*?.

Subtracting the effects of Joulean heating (by, for
instance immersing the conductor in a constant
temperature bath) there can be no net conduction of
heat along the direction of electron flow in the
1Isothermal situation, in accordance with the Fourier
principle. However, electrons will flow along the
conductor and carry thermal energy in the direction
of their flow. Since the system is characterized by a
constant temperature, there will only be transfer of
thermal energy by transport and no conduction.

The LIT formulation therefore does not contra-
dict the ideas presented by BQ provided both refer
to conducttve heat, whereas the ‘rational thermo-
dynamics’ school of Truesdale and others are not
compatible with the BQ assertions regarding con-
ductive heat!’,

It is only when BQ regard their q vector as
constituting the total heat current that misunder-
standings with the LIT theory become apparent,
since one of the BQ assumptions is that'? q=0
entails VI'=0. Equation (1) does not support this
view if the BQ q is identified with JI°L There is no
other way in which it is possible for LIT to violate
the Fourter inequality unless this identity is made,
BQ have not shown why any violations should
occur, although they insist that the LIT coupling
coefficients cause violations to the Fourier
mequality.

BQ mtroduced the idea of the ‘change of material
cocflicients’'® as an alternate way of viewing
coupled phenomena!? to circumvent the purported
difficulties inherent in other approaches. Such a
viewpoint may in part be traced to the influence of
Campbell'*!% in his experimental description of
thermomagnetic effects in which the actual form of
the kinetic equations does not change; the result of
the interaction of a magnetic (and possibly other
fields) simply serves to modify the kinetic coefficient
pertinent to the flow. For instance, if the resistance
R, 1s said to be defined for a conductor according to
the phenomenological equation:

J.={1/R,)AE, (6)

where AE is a fixed potential difference across the
uniform conductor for current flow J, (see reference
16 for BQ interpretation of magneto-resistance), for
large enough fixed AE (i.e. a voltage source across
the conductor} the current through the conductor
will vary as the applied magnetic field (or other field)
gradient varies due to the presence of the Lorentz
and lattice forces on the moving electrons due to the
magnetic field gradient; what has occurred is that a
seat of e.m.f has been created within the conductor
which modifites the flow of electrons, so that from (6),
Campbell concludes that a ‘change’ of resistance has
occurred. If there exists an active Seebeck field in the
conductor due to a temperature gradient instead of a
magnetic filed, a similar situation as for the magnetic
case would ensue, i.e. the current will vary (for fixed
A E) as the temperature gradient varies.

However, it may be argued that definition (6) only
applies to isothermal conductors with no other
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interactions apart from the external field AE. If an
active em.f. seat is induced within the conductor
(c.g. by say the Seebeck field due to a temperature
gradient) then it would tend to oppose or assist the
field due to an external seat of emf Hence a
different steady state current would flow through the
conductor for the same voltage difference AE tf these
fields were present compared to the case when they
are not. The ‘actual’ resistance of the material does
not in fact change if we properly account for the
induced e.m.f.

We now give an example which will also provide
the proper coupling relationship between the electric
field and temperature field, other than the one
provided by BQ'’, which cannot be correct, as will
be shown.

For the Seebeck effect, for example, the non-
uniform temperature distribution will complicate the
measurement of resistance because of the induced
e.m.f. This can be allowed for, however, by defining
the passive resistance of a conductor with a non-
uniform temperature distribution maintained at 7,
and T, at the ends by

Ty

R.,=R(Ty)+ J. R(T)-I'dT {7}

Ty

with I’ =0l/8T. Here, R(T) is the resistance per unit

length, and R(T,) the resistance of the conductor at
temperature 7, and [ the length parameter of the
conductor. The change of resistance may be deter-
mined by isothermal measureients of the resistance
at different temperatures.

The heat dissipated in an isothermal passtve
resistor is given by the total work done by the field
and is given per unit length by the term —dE/dx-J,
which may be termed the isothermal Joulean
dissipation. For a resistance of unit length, we may
write:

Joulean dissipation=J2?R,= ~dE/dx-J,. (8)

On the other hand, the total heat dissipated in
unit length of a conductor'® in the steady state in
the presence of both an electrical and thermal
gradient may be written as (neglecting the Fourer
conduction component):

Total heat dissipated =

de de
~7J,—+I/K,=—TJ, —
dx dx

~J, == E—-]J 9
3 ‘ (9)

where

J2/K,=J2R, = —1J, dE/dx —&-dT/dx-J..
(10)

Thus, in the presence of a thermal gradient, the
Joulean dissipation J2 R, is composed of two terms,
the isothermal Joulean dissipation —J,-dE/dx and
a correction term linear in the temperature gradient
which may be called the ‘Seebeck’ heat
—¢-dT/dx-J,.

We may simulate a unit length of the conductor
by the circuit element depicted in figure 1 where R,
is the intrinsic resistance, ¥, the Seebeck active
emf, and dE/dx 1s the actual emf across the
segment whose surfaces are at a and b.

Then Kirchoff’s voltage law gives for the above

system:
dE/dx= ~J R, +V,, (11)

where V, is —e dT/dx, the Seebeck active et
field. Thus from (11)

J2R,=J:/K,=—dE/dx-J,—¢dT/dx ],
(12)
as before in (10).
If J,—0, (i.e. the Joulean heat 1s made to vanish)
then the actual work done —dE/dx-J, in a unit
length is numerically equal to the Seebeck heat

loss!*. The terms ¢ and V¢ used by BQ! are
equivalent to our E and dE/dx (in one dimension).

When J2R,—0, then (12) yields
dE/dxly —g= —¢VT. (13)

This relation defines the Seebeck coefficient ¢ {(ref. 200.
BQ write instead

Vo =1VT, (14)

where 7 1s the Thomson coeflicient.

Equation (14) 1s supposed to represent the link
between the electrical potential and temperature

dE /dx
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gradient, “long known in its rudimentary form™?',
The only reference to any such relationship is in one
of Bridgman's theoretical constructs. If they were
influenced by this construct, then it appears that
they have misconstrued Bridgman's expression??

(emf)w=0(d7T/dr), {15)

where o is the Thomson coefficient in Bridgman’s
notation. The BQ emf V¢ refers not to the
‘conventional’ potential difference but rather to
Bridgman's hypothetical ‘working’ e.m.f. denoted
(e.m.f)w which is not a directly observable quantity
but s defined in terms of the rate at which heat 1s
absorbed when current flows??,

In any case, it is not correct to use (14) as a Ik
between the electrical potential and the temperature

gradient.

CONCLUSIONS

It is conceivable that the ‘change in material
coellicients’ may feature m a higher order expansion
of flux expressions than is used in LIT (which is a
first order expansion) but it would not be appropri-
ate to equate these changes with the first order
approxtmnations characteristic of such theories as
Onsager’s LIT. BQ, however, neglected the im-
portance of thermal transport and convective heat,
and required the “change in material coefficients” as
a device to compensate for this neglect. Howevert,
since conductive heat transfer does not mnvolve the
same mechanism as the other forms of thermal
exchange, it follows that the BQ theory is
incomplete if not flawed. We have shown that LIT is
a consistent theory to first order and yields the
correct convergence in the restricted treatment of
thermo-clectric effects above. The BQ hypothesis
regarding the Fourier inequality for the conductive
part of the heat current still remains a very
interesting and original conjecture,

It must be stressed that the above derivations are
based on ‘per umit length’, of material. 1t will be
shown In future communications that a more
detailed analysis of the above implies further
generalizations of the Kelvin relations for ther-
mocouples and that Onsager-like reciprocity may be
derived from the conjecture on Fourier heat
conduction within the LIT framework which couples
forces and fluxes linearly with no reference what-
soever to the Onsager hypothesis of detailed
balance, microscopic reversibility and the regression
of fluctuations. Finally, a certain degree of scepti-

/b,

Y

cism is warranted in regard to the Bridgman
equation and its experimental verifiability.
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