SHORT COMMUNICATIONS

VIBRATIONAL SPECTRA OF AQUATUNGSTEN (VI) OXIDE (WO₃.H₂O)

DAIZY PHILIP, G. ARULDHAS* and V. RAMAKRISHNAN**

Department of Physics, University of Kerala, Trwandrum 695 581, India.

**School of Physics, Madurai Kamaraj University, Madurai 625 021, India.

AQUATUNGSTEN (VI) oxide (WO₃.H₂O) is one of the very few hydrated oxides with a water molecule directly bonded to a metal atom¹. No detailed vibrational study of this compound has been done so far. In the present communication, vibrational analysis of WO₃.H₂O has been carried out to understand the nature of the co-ordination between the tungsten and oxygen atoms.

The Raman spectrum of Analar grade WO₃.H₂O was recorded in the Stokes' region of the green line 5145 Å (power 200 mW) using a Spex Ramalog 1401 double monochromator equipped with a Spectra Physics model 165 Ar⁺ laser. As there is a possibility of the sample getting dehydrated, the spectrum was recorded in six steps, each time introducing a capillary tube filled with new sample. The IR spectrum in the region 200-4000 cm⁻¹ was

obtained on a Perkin-Elmer 983 spectrophotometer with the sample prepared as KBr pellet.

The tetramolecular orthorhombic unit cell (Pmnb) of WO₃.H₂O is characterized by distorted octahedral units of tungsten atoms co-ordinated to five oxygen atoms and a water molecule¹. Hence vibrational assignments have been carried out on the basis of vibrations due to WO₆ octahedron and water molecule. The lower site symmetry of the octahedra may lead to anisotropic crystal field, causing the inactive modes to become active, removal of degeneracies of normal modes; and shifting of the frequencies of non-degenerate modes.

The vibrational assignments are given in table 1. The splitting of the non-degenerate v_1 mode of WO_6 is due to correlation field effect. A large splitting of about $110 \,\mathrm{cm}^{-1}$ is observed for the v_3 mode due to site symmetry and correlation field effects. This large splitting of the v_3 mode and shifting of the bending modes v_4 and v_5 to high frequencies are indicative of a considerably distorted^{2,4} WO_6 octahedron. The appearance of inactive modes also supports this. Two sets of frequencies have been observed for the vibrations of O-H bonds. Hence hydrogen bonds of two different strengths are evident, as suggested from structural studies¹.

The strong IR band at 1400 cm⁻¹ is assigned to the O-H... O deformation mode⁵. Even though the librational modes of water fall within the region

Table 1 Vibrational assignments for WO₂.H₂O

rause 1	r toructonus ussignments jor	W 03.1120
Raman (cm ⁻¹)	IR (cm ⁻¹)	Assignments
3398 (m), 3372 (br)	3000-3300 (br)	v ₃ H ₂ O
3267 (m), 3214 (m)	3000-3300 (br)	$v_1 H_2O$
1652 (br), 1620 (br)	1650-1610 (br)	$v_2 H_2O$
	1400 (vs)	O-H O deformation
959 (sh), 952 (vs), 931 (s)	950 (m), 927 (m)	$v_1 WO_6$
884 (s), 857 (s), 823 (s),	880 (s, br), 858 (m)	-
816 (s), 778 (s), 771 (w)	810 (m), 770 (br)	$v_3 WO_6$
744 (w), 733 (m), 726 (s)	730 (w), 705 (w)	$v_2 WO_6$
683 (br), 648 (br), 560 (br)	675 (w), 600–540 (br)	Librations of H ₂ O
506 (s), 492 (w), 455 (s),	525 (m), 505 (m)	_
444 (s), 421 (m)	455 (w), 438 (w)	$v_5 WO_6$
397 (m), 392 (m),	335 (w)	
320 (m), 307 (s)	314 (m)	$v_4 \text{ WO}_6$
287 (w), 246 (m), 217 (w),	•	•
204 (m), 182 (s), 106 (m)		External modes

s, strong; br, broad; m, medium; w, weak; vs, very strong; s, br, strong broad.

^{*}For correspondence.

of the internal modes of WO₆, one can distinguish the weak bands due to the water molecule. Assignment of bands due to external modes is difficult in a powder spectrum.

One of the authors (DP) is thankful to CSIR, New Delhi, for a fellowship.

12 September 1988

- 1. Szymanskii, J. T. and Roberts, A. C., Can. Mineral., 1984, 22, 681.
- 2. Miller, P. J., Spectrochim. Acta, 1970, A22, 957.
- 3. Legeois-Duyckaerts, G. and Tarte, P., Spectrochim. Acta, 1974, A30, 1771.
- 4. Blasse, G. and Corsmit, A. F., J. Solid State Chem., 1973, 6, 513.
- 5. Vinogradov, S. N. and Linnel, R. H., Hydrogen bonding, Van Nostrand, New York, 1970.

STEREOSPECIFIC SYNTHESIS OF METHYL/t-BUTYL (+)-1R-TRANS-2, 2-DIMETHYL-3-(2-p-CHLOROPHENYLETHYNYL) CYCLOPRO-PANECARBOXYLATES FROM (+)-3-CARENE

S. S. BHOSALE and G. H. KULKARNI National Chemical Laboratory, Pune 411 008, India.

IN an earlier communication¹, we reported the synthesis of 3-phenoxybenzyl (+)-1 R-trans-2, 2-dimethyl-3-(2-p-chlorophenyl-2-chlorovinyl/2-E-p-chlorostyryl/2-p-chlorophenylethynyl)cyclopropane-carboxylates. Some of these esters have been already reported to possess insecticidal, acaricidal and ectoparaciticidal activities. Kishida et al² have synthesized substituted 2-ethynylcyclopropane-1-carboxylic acid esters of type I, patented for their insecticidal, herbicidal, anti-inflammatory properties and also as hypoglycemic agents. In this communication, we report an alternative stereospecific route for the optically active esters of type I, viz. XII and XIII from (+)-3-carene (II).

Grignard reaction on ketoaldehyde (III), obtained from (+)-3-carene (II), using p-chlorophenylmagnesium bromide (2.5 mol), gave a diastereomeric mixture of diols (IV, 72%), *C₂₂H₂₆O₂Cl₂, as a thick liquid identified by spectral data. IR**: 3380 (OH), 1598 (aromatic). PMR (CDCl₃): 0.44 (2H, m, C₁ and C₃ H), 0.64, 0.70, 0.80, 0.88, 0.96, 1.04 (6H, s each, cyclopropanemethyls of diastereomers), 1.56

(7H, s overlapping a multiplet, CH₂ at C₁ and C₃ and tertiary methyl), 2.64 (2H, s, exchangeable with D₂O, hydroxy H), 4.72 (1H, m, benzylic H) and 7.36, 7.45 (8H, s each, aromatic H).

The hydroxymonoacetate (V) prepared from IV, afforded, on dehydration (pTSA/benzene), unsaturated acetate (VI, 90%) as a mixture of diastereomers, $C_{24}H_{26}O_2Cl_2$. IR: 1735, 1232 (acetate), 1598 (aromatic), 820 (-CH=C<). PMR (CDCl₃): 0.68 (1H, m, C₃H), 0.84, 1.00, 1.06, 1.14 (6H, s each, cyclopropanemethyls of diastereomers), 1.32 (1H, m, C₁H), 1.8 (2H, m, CH₂ at C₃), 2.04 (6H, brs, vinyl and acetate methyls), 5.35-5.74 (2H, brm, olefinic and benzylic H of diastereomeric E and Z isomers) and 7.28, 7.36 (8H, s each, aromatic H).

The corresponding unsaturated alcohol (VII) obtained from VI by saponification (KOH, MeOH) gave, on Jones oxidation, the expected ketone (VIII, 76%), $C_{22}H_{22}OCl_2$. $[\alpha]_D^{31} + 19.5^{\circ}$ (c, 0.5, CHCl₃).

^{*}Satisfactory elemental analysis has been obtained for all the compounds reported.

^{**}IR bands expressed in v (cm $^{-1}$) and PMR chemical shifts in δ (ppm) with TMS as internal standard.