SHORT COMMUNICATIONS #### VIBRATIONAL SPECTRA OF Mg₂P₄O₁₂ # K. VISWANATHAN*, V. U. NAYAR and G. ARULDHAS Department of Physics, University of Kerala, Kariavattom, Trivandrum 695 581, India. Present address: Cosmic Ray Laboratory (TIFR), Oorgaum P.O., KGF 563 120, India. The infrared and Raman spectra of tetrametaphosphates of divalent metals have been reported earlier¹⁻⁴. It was found that the symmetry of the anion (P_4O_{12}) is different in different crystals— C_{2h} in $Zn_2P_4O_{12}$, S_4 in $Co_2P_4O_{12}$ and D_{2d} in $Cu_2P_4O_{12}$. However, in $M_2P_4O_{12}$ (M=Fe, Ni) the anion is found to have C_i symmetry, which is in agreement with X-ray results. The vibrational-spectral analysis of a similar compound is reported here. The Raman spectrum was recorded using a SPEX 'Ramalog' 1401 double monochromator with the finely powdered sample taken in a capillary tube. The 4880 Å line of a Spectra Physics model 165 argon ion laser was the excitation. The IR spectrum was obtained on a PE 225 spectrometer with the sample as Nujol mull. $Mg_2P_4O_{12}$ crystallizes in the monoclinic system with space group^{5,6} C_{2h} . There are four formula units in the crystallographic unit cell⁵. Since the crystallographic unit cell is not primitive, the number of molecules per Bravais unit cell is considered (which is 2 here). Of the 108 vibrations predicted, 51 modes are Raman-active $(25 A_g + 26 B_g)$ and 54 modes are IR-active $(27 A_u + 27 B_u)$. The remaining 3 modes $(A_u + 2 B_u)$ are acoustical vibrations. The free ion model predicts 42 modes of internal vibrations. Since more than 42 bands are observed, a factor group model has been used to interpret the spectrum. The interpretation was done on the same basis as for the other tetrametaphosphates reported earlier³. The presence of coincidences between the IR and Raman lines in the spectra rules out the possibility of a centre of symmetry for the anion, which eliminates the free ion symmetries C_i and C_{2h} out of the four possible symmetries predicted (C_i, C_{2h}, S_4) and D_{2d} . A comparison of the spectra with those of Cu₂P₄O₁₂, reported earlier³, shows that the symmetry of the anion in Mg₂P₄O₁₂ is lower than that in Cu₂P₄O₁₂. For instance the asymmetric POP stretching mode splits into four components in **Table 1** Assignment of the fundamental vibrations in $Mg_2P_AO_{12}$ and $Cu_2P_AO_{12}$ | $Mg_2P_4O_{12}$ and $Cu_2P_4O_{12}$ | | | | | |---|--|---|--|-------------------------------------| | $Mg_2P_4O_{12}$ | | Cu ₂ P ₄ O ₁₂ | | | | Raman | 1R | Raman | IR | Assignment | | 1365 vw
1349 vw
1326 s
1289 s | 1340 s
1295 s | 1338 w
1294 s
1263 vs | 1270 w | ν _{asy} (PO ₂) | | 1168 vs
1139 w
1120 vw
1059 w | | 1170 vs
1145 vs
1088 m
1062 m
1061 m | 1130 w | v _{sy} (PO ₂) | | 1049 vw
1009 w
972 w
910 vw | 1045 s | 930 w | | vasy (POP) | | 822 w
798 vw
765 vw
689 vs | 742 vs
719 vs | 812 w
811 w
690 vs | 730 vs | v _s (POP) | | 618 m
553 w
510 vw
462 w
446 w | 592 m
560 m
532 m
516 s
470 w | 626 s
525 m
524 m
462 vw
441 m | 580 w
560 w
524 w
490 m
462 w
448 w | δ(PO ₂) | | 418 vs
390 vw
360 vs | 416 s
393 s
358 w | 409 vs
387 vs
360 vw | 398 m
360 w
330 m | δ(POP)+ M-O stretch- ing | | 340 m
324 vw
298 vw
249 m
224 w
196 m
173 w | 338 w
323 s
293 s
258 w
240 m
218 w | 350 s
325 w
285 w
272 m
240 w
220 m
207 m
158 w
157 w | 300 vw
275 m
245 ms
219 m | | | 144 w
102 m
72 w
60 vw | | 106 w
85 m
68 m | | Lattice modes | vw, Very weak; w, Weak; m, Medium; s, Strong; vs, Very strong. Mg₂P₄O₁₂, whereas only one line is observed in Cu₂P₄O₁₂ (in Raman). Similar splittings are observed in the other regions also. The characteristic IR absorption line of a cyclic P₄O₁₂ ion (symmetric POP stretching) is observed as a doublet at 742 and 719 cm⁻¹ in Mg₂P₄O₁₂, whereas only one line is observed for Cu₂P₄O₁₂ (at 730 cm⁻¹). The complete assignment of the observed frequencies is given in table 1. The frequencies of Cu₂P₄O₁₂ are also given in table 1 for comparison. The splitting of different modes into several components indicates that the symmetry of the anion in $Mg_2P_4O_{12}$ is lower than that in $Cu_2P_4O_{12}$ which has D_{24} symmetry. Thus it can be concluded that the symmetry of the P_4O_{12} ion in $Mg_2P_4O_{12}$ is S_4 . The authors thank Prof. Bagieu-Beucher, CNRS, France, for providing the sample, and DST, New Delhi, for financial assistance. ### 6 May 1988; Revised 21 July 1988 - 1. Polataev, E. V., Izv. Akad. Nauk. SSSR Ser. Khim., 1968, 18, 142. - 2. Steger, E. and Simon, A., Z. Anorg. Allg. Chem., 1958, 294, 1 and 146. - 3. Viswanathan, K., Nayar, V. U. and Aruldhas, G., Proc. Indian Acad. Sci. (Chem. Sci.), 1985, 95, 463. - 4. Ramakrishnan, V., Aruldhas, G. and Bigotto., Infrared Phys., 1985, 25, 463. - 5. Bagieu-Beucher, M., Gondrand, M. and Perroux, M., 1976, 19, 353. - 6. Polataev, E. V., Akad. Nauk. Kaz. SSSR Ser. Khim., 1958, p. 42. ## A NEW ONE-STEP PREPARATION OF β-APOPICROPODOPHYLLIN FROM PODOPHYLLOTOXIN C. ANJANAMURTHY and S. SHASHIKANTH Department of Chemistry, University of Mysore, Mysore 570 006, India. BETA-apopicropodophyllin was prepared in one-step in excellent yield by dehydration of podophyllotoxin (1) with boron trifluoride etherate in dioxan. Podophyllotoxin. (1) and several of its analogues and derivatives are cytostatic spindle poisons¹ and antitumour agents, some at clinical level². I contains a trans fused highly strained γ -lactone system³, a feature that correlates with epimerization of 1 to its thermodynamically stable cis epimer picropodophyllin(3)⁴. β -Apopicropodophyllin (5), a dehydration product of 1, contains a cis-fused lactone system and acts as a much stronger antimitotic agent⁵; 5 was prepared previously by a three-step procedure⁶ (starting from 1 involving epimerization of 1 to 3, dehydration of 3 to α -apopicropodophyllin (4) and base-catalysed isomerization of 4 to 5) and also by a single-step procedure using p-toluensulphonyl chloride and pyridine⁷. As reported earlier⁵ some of the ether derivatives of 1 were more biologically active than 1. It was envisaged that incorporating ascorbic acid in 1 through an ether linkage as in 2 might enhance the biological activity and therefore we decided to prepare the compound 2. On stirring a mixture of 1 and ascorbic acid in the presence of borontrifluoride etherate in dioxan at room temperature and follow-up of the reaction, it was found that β -apopieropodophyllin (5) was the major product. When a mixture of 1 and ascorbic acid in dioxan was stirred no new product was obtained while only borontrifluoride etherate effected the dehydration of 1 with concomitant isomerization