SHORT COMMUNICATIONS

VIBRATIONAL SPECTRA OF Mg₂P₄O₁₂

K. VISWANATHAN*, V. U. NAYAR and G. ARULDHAS

Department of Physics, University of Kerala, Kariavattom, Trivandrum 695 581, India.

Present address: Cosmic Ray Laboratory (TIFR), Oorgaum P.O., KGF 563 120, India.

The infrared and Raman spectra of tetrametaphosphates of divalent metals have been reported earlier¹⁻⁴. It was found that the symmetry of the anion (P_4O_{12}) is different in different crystals— C_{2h} in $Zn_2P_4O_{12}$, S_4 in $Co_2P_4O_{12}$ and D_{2d} in $Cu_2P_4O_{12}$. However, in $M_2P_4O_{12}$ (M=Fe, Ni) the anion is found to have C_i symmetry, which is in agreement with X-ray results. The vibrational-spectral analysis of a similar compound is reported here.

The Raman spectrum was recorded using a SPEX 'Ramalog' 1401 double monochromator with the finely powdered sample taken in a capillary tube. The 4880 Å line of a Spectra Physics model 165 argon ion laser was the excitation. The IR spectrum was obtained on a PE 225 spectrometer with the sample as Nujol mull.

 $Mg_2P_4O_{12}$ crystallizes in the monoclinic system with space group^{5,6} C_{2h} . There are four formula units in the crystallographic unit cell⁵. Since the crystallographic unit cell is not primitive, the number of molecules per Bravais unit cell is considered (which is 2 here). Of the 108 vibrations predicted, 51 modes are Raman-active $(25 A_g + 26 B_g)$ and 54 modes are IR-active $(27 A_u + 27 B_u)$. The remaining 3 modes $(A_u + 2 B_u)$ are acoustical vibrations.

The free ion model predicts 42 modes of internal vibrations. Since more than 42 bands are observed, a factor group model has been used to interpret the spectrum. The interpretation was done on the same basis as for the other tetrametaphosphates reported earlier³.

The presence of coincidences between the IR and Raman lines in the spectra rules out the possibility of a centre of symmetry for the anion, which eliminates the free ion symmetries C_i and C_{2h} out of the four possible symmetries predicted (C_i, C_{2h}, S_4) and D_{2d} . A comparison of the spectra with those of

Cu₂P₄O₁₂, reported earlier³, shows that the symmetry of the anion in Mg₂P₄O₁₂ is lower than that in Cu₂P₄O₁₂. For instance the asymmetric POP stretching mode splits into four components in

Table 1 Assignment of the fundamental vibrations in $Mg_2P_AO_{12}$ and $Cu_2P_AO_{12}$

$Mg_2P_4O_{12}$ and $Cu_2P_4O_{12}$				
$Mg_2P_4O_{12}$		Cu ₂ P ₄ O ₁₂		
Raman	1R	Raman	IR	Assignment
1365 vw 1349 vw 1326 s 1289 s	1340 s 1295 s	1338 w 1294 s 1263 vs	1270 w	ν _{asy} (PO ₂)
1168 vs 1139 w 1120 vw 1059 w		1170 vs 1145 vs 1088 m 1062 m 1061 m	1130 w	v _{sy} (PO ₂)
1049 vw 1009 w 972 w 910 vw	1045 s	930 w		vasy (POP)
822 w 798 vw 765 vw 689 vs	742 vs 719 vs	812 w 811 w 690 vs	730 vs	v _s (POP)
618 m 553 w 510 vw 462 w 446 w	592 m 560 m 532 m 516 s 470 w	626 s 525 m 524 m 462 vw 441 m	580 w 560 w 524 w 490 m 462 w 448 w	δ(PO ₂)
418 vs 390 vw 360 vs	416 s 393 s 358 w	409 vs 387 vs 360 vw	398 m 360 w 330 m	δ(POP)+ M-O stretch- ing
340 m 324 vw 298 vw 249 m 224 w 196 m 173 w	338 w 323 s 293 s 258 w 240 m 218 w	350 s 325 w 285 w 272 m 240 w 220 m 207 m 158 w 157 w	300 vw 275 m 245 ms 219 m	
144 w 102 m 72 w 60 vw		106 w 85 m 68 m		Lattice modes

vw, Very weak; w, Weak; m, Medium; s, Strong; vs, Very strong.

Mg₂P₄O₁₂, whereas only one line is observed in Cu₂P₄O₁₂ (in Raman). Similar splittings are observed in the other regions also. The characteristic IR absorption line of a cyclic P₄O₁₂ ion (symmetric POP stretching) is observed as a doublet at 742 and 719 cm⁻¹ in Mg₂P₄O₁₂, whereas only one line is observed for Cu₂P₄O₁₂ (at 730 cm⁻¹). The complete assignment of the observed frequencies is given in table 1. The frequencies of Cu₂P₄O₁₂ are also given in table 1 for comparison.

The splitting of different modes into several components indicates that the symmetry of the anion in $Mg_2P_4O_{12}$ is lower than that in $Cu_2P_4O_{12}$ which has D_{24} symmetry. Thus it can be concluded that the symmetry of the P_4O_{12} ion in $Mg_2P_4O_{12}$ is S_4 .

The authors thank Prof. Bagieu-Beucher, CNRS, France, for providing the sample, and DST, New Delhi, for financial assistance.

6 May 1988; Revised 21 July 1988

- 1. Polataev, E. V., Izv. Akad. Nauk. SSSR Ser. Khim., 1968, 18, 142.
- 2. Steger, E. and Simon, A., Z. Anorg. Allg. Chem., 1958, 294, 1 and 146.
- 3. Viswanathan, K., Nayar, V. U. and Aruldhas, G., Proc. Indian Acad. Sci. (Chem. Sci.), 1985, 95, 463.
- 4. Ramakrishnan, V., Aruldhas, G. and Bigotto., Infrared Phys., 1985, 25, 463.
- 5. Bagieu-Beucher, M., Gondrand, M. and Perroux, M., 1976, 19, 353.
- 6. Polataev, E. V., Akad. Nauk. Kaz. SSSR Ser. Khim., 1958, p. 42.

A NEW ONE-STEP PREPARATION OF β-APOPICROPODOPHYLLIN FROM PODOPHYLLOTOXIN

C. ANJANAMURTHY and S. SHASHIKANTH Department of Chemistry, University of Mysore, Mysore 570 006, India.

BETA-apopicropodophyllin was prepared in one-step in excellent yield by dehydration of podophyllotoxin (1) with boron trifluoride etherate in dioxan.

Podophyllotoxin. (1) and several of its analogues and derivatives are cytostatic spindle poisons¹ and

antitumour agents, some at clinical level². I contains a trans fused highly strained γ -lactone system³, a feature that correlates with epimerization of 1 to its thermodynamically stable cis epimer picropodophyllin(3)⁴. β -Apopicropodophyllin (5), a dehydration product of 1, contains a cis-fused lactone system and acts as a much stronger antimitotic agent⁵; 5 was prepared previously by a three-step procedure⁶ (starting from 1 involving epimerization of 1 to 3, dehydration of 3 to α -apopicropodophyllin (4) and base-catalysed isomerization of 4 to 5) and also by a single-step procedure using p-toluensulphonyl chloride and pyridine⁷.

As reported earlier⁵ some of the ether derivatives of 1 were more biologically active than 1. It was envisaged that incorporating ascorbic acid in 1 through an ether linkage as in 2 might enhance the biological activity and therefore we decided to prepare the compound 2.

On stirring a mixture of 1 and ascorbic acid in the presence of borontrifluoride etherate in dioxan at room temperature and follow-up of the reaction, it was found that β -apopieropodophyllin (5) was the major product. When a mixture of 1 and ascorbic acid in dioxan was stirred no new product was obtained while only borontrifluoride etherate effected the dehydration of 1 with concomitant isomerization