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ABSTRACT

Weak localization due to coherent back-scattering in the presence of spin-orbit coupling is
examined for a possible manifestation of Berry’s phase. The pairs of counter-propagating
wave-amplitudes along the time-reversed Boltzmannian paths are shown to accumulate random
relative phase which is purely geometric in the adiabatic limit. The resulting dephasing time 7,

has quartic field dependence and scales as ¢/} and ¢;

%7, respectively, in two and three

dimensions, where c; 1s the spin-orbit impurity concentration. Optimal experimental conditions

are discussed.

THE existence and the operational meaning of the
non-integrable geometric phase shift y(C)
associated with the cyclic evolution of a quantum
system as its Hamiltonian is modified adiabaticaily
in time T along a closed circuit (C) in its parameter
(R) space, has become the subject of intense
discussion following the recent work of Berry!. This
geometric phase was predicted in wave-optics by
Pancharatnam?®. Berry showed that in addition to
the familiar dynamical phase factor

exp (—%. JT E,(R()) dr)

o

the system acquires a purely geometric phase factor
exp(iy(C)), where ¥(C) depends on the circuit C
but not on how C is traversed, providing adiabaticity
of course. The sign of y(C) is the sense of the
circuital traversal. In the particular case of a
two-level system (e.g. a spin-1/2 object in a magnetic
field), ¥(C) is simply half the solid angle subtended
by C at the origin of the 3-dimensional parameter
space {(a purely geometric quantity). The origin is
the point of degeneracy. The decomposttion of the
total phase shift between the dynamical and the
geometric components s unambiguous 1n the
adiabatic cyclic limit. The topological nature of this
phase has now been well confirmed expenmentally
by several workers in optical’~>, NQR® and pola-
rized neutron spin rotation’ experiments designed
specifically to detect the phase. In this note we point
out a natural manifestation of this geometric phase
in the sohd state phenomenon of magneto-
conductance® in the weak localization® regime in the
presence of spin-orbit coupling. This is an important

problem in 1ts own right, in the physics of quantum
transport is disordered systems.

For the sake of clarity, let us first consider the
following operational viewpoint. In principle a
quantum system can be made to acquire the
geometric phase shift y{C) by varying a parameter,
say, by turning a ‘knob’ slowly. Operationally,
however, this phase cannot be detected inasmuch as
the phase is detected only by compacison, i.e. by
interference of alternatives. There can be two kinds
of interference experiments. In the first kind,
exempliified by the Bohm-Aharonov effect in the
parameter space, there is interference of the system
with itself when the partial amplitudes propagate
through the parameter space in a split-beam man-
ner. Thus the system itself turns the ‘knob’. Here
the adiabatic condition may be effectively satisfied
by the nature of the coupling (to vector potential).
The second kind is more subtle, and is exemplified
by a Stern-Gerlach type experiment. Here the
system is factorizable into a fast (spin) subsystem §,
and a slow (orbital) subsystem S,. The fast (spin)
sub-system §; evolves under its own (spin) Hamilto-
nian involving the parameters (magnetic field), but
the latter are function of the slow (translational)
degrees of freedom of S;. The slow evolution of §,
modifies adiabatically the parameters of §, causing
it to pick up the geometric phase shift, Thus S, turns
the ‘knob’ for §;. In the following we will see that
weak-localization provides an ideal system of the
second kind.

Weak localization results from coherent backe
scattering: the partial scattering amplitudes counter-
propagating along a closed path returning to the
origin, add up ia phase in the absence of magnetic
field, spin-orbit coupling or magnetic impunties,
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despite potential disorder assumed quenched (elas-
tic scattering only). This doubling of back-scattered
amplitudes reduces the diffusion coefficient—the
weak localization effect 1n disordered systems, e.g.
a-Mg. Now the dephasing of the partial amplitudes
due to magnetic flux enclosed by the translatory
motion {Aharonov-Bohm effect) and that due to
dynamical spin-orbit coupling in the presence of
heavier atoms, e.g. Au in a-Mg can lead to
magneto-conductance. This has been studied exten-
sively in recent vyears, theoretically as well as
experimentally’, We will now show that under
suitable conditions, realizable experimentally, the
geometric phase shift due to spin-orbit coupling can
become the dominant effect. Here adiabaticity
would require strong magnetic field (large Zeeman
splitting) and slow electrons (small Fermi speed).
The Hamiitoman describing the electron motion
in a random potential (vg) in the presence of an
external field (h,) and spin-orbit coupling is:
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with VXA = (0,04,) and § the electron spin. As
usual the translatory motion of the electron is
assumed and determined by the random static
potential (Vg ) giving Boltzmannian diffusion coeffi-
clent D, = v [, and a dimensionality (d)-dependent
diffusion correction due to coherent backscattering.
Here vp is the Fermi speced and I, the elastic
mean-free path. Vector potential A leads to negative
magneto-resistance by cutting off the diffusion
correction through the Bohm-Aharonov type de-
phasing of the translational motion®. We will consi-
der only the last two terms of (1) affecting the
spin-wavefunction. The instantaneous magnetic
field sensed by the electron spin is

mp X l‘)

i

h(r) =h,+ —(VV,
ec

= h,+ h(r). (2)

Here V,n, is a short-range potential due to the
randomly distributed dilute concentration ¢, of
heavier impurity atoms (e.g. Au) with mean
spacing > meanfree path /, due to disordered host
(e.g., a-Mg). Thus, while the translatory motion
may be taken to be diffusive (velocity not defined)
on length scale > [, it is still smooth on the length
scale ~ range of V., with [i(t)] = v, that is we
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have constant speed but randomly changing direc-
tion at a mean rate 1/7, = vg/l,. In the parameter
space of magnetic field the counter-propagating
partial amplitudes trace out closed circuits P, and P,
shown in figure 1 as the ith impurity is visited. Since
P, and P, are traversed in the opposite sense, they
contribute a relative phase shift A$, given by the
solid angle subtended at the origin:

Iﬁ‘f’:l -~ n47(hsufha)2: (3)

where % is a numerncal constant of order unity, Here
A, 15 the typical spin-orbit magnetic field. Now the
mean time interval between such encounters is
c7 ¥4, (= time to diffuse through mean impurity
spacing). Thus in the circuit time T there will be
TX.c?? such events. As Ag, are random in sign, we
get for the root mean-squared phase shift Ad:

Ad ~ drn(TT, ¢ (huolh,). (4)

Now the dephasing time T = 7, can be estimated
by requiring A¢ ~ 1 giving

1 h, \*
Tso ™ 16r2n2f£‘,c?d (h_;) ' (3)

The above calculation assumes adiabaticity which
must be examined now. The condition for adiabati-
City Is
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where Ay, 15 the typical spatial range of the spin
orbital field. Thus A,,/vgis the collision time during
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Figure 1. Showing schematically the trajectories P,

and P, in the parameter space of the counter-
propagating partial amplitudes as {} = impurity is
visited. Note the opposite sense of traversal due to
velocity dependence of the spin-orbit magnetic field.
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which the spin Hamiltonian changes by an amount
~ pughe while 2ughg 1s the Zeeman splitting. Thus
the larger Berry phase requires larger h/h, but
adiabaticity demands just the opposite.

We now consider the experimental situation and
make order-of-magnitude estimates. First consider
the two-dimensional case, 1d = 2. By this we mean
sufficiently thin films {thickness < 1,) but the spin
orbit field h,,(r) is still three dimensions, We take
external field parallel to the film so that the usual
Aharonov-Bohm type translational dephasing is
eliminated. Also, let the sample be free from
magnetic impurities so that we are left just with the
spin-orbital dephasing. We consider temperature
low enough to eliminate inelastic cut-offs. Indeed,
the inversion layer of a MOSFET or a heterostruc-
ture with proper doping is ideal for our purpose.
For this situation we can have vg ~ 5x10°cm™},
for carrier concentration ~ 2x10*? em™2, i, ~ 10
tesla, D, = Vgl, ~ 1 cm? s~ . Now for &, = Evg,
we take the Coulombic field E as due to a singly
tonized impurity at a distances ~ layer thickness
~ SA. This gives hy, ~ 50G for ¢; we choose -
atomic layer coverage giving ¢, ~ 10'* cm™2. Then
we get 7, ~ 1077 s, and.the adiabaticity para-
meter ~ 107! < 1. The diffusion correction to
conductance in d = 2 15 proportional to In 7,/7,
and is thus measurable. For d = 3 with correspon-
ding choice of parameters, we find 7§, large
enough but the adiabaticity condition is badly vio-
lated. One needs systems with low carrier concen-
tration {small v and, of course, small meanfree
path). This should be possible with compensated
semiconductors. The charactenistic field and con-
centration dependence is verifiable. We should also
remark here that in the adiabatic limit our system
suffers no dynamical phase shift as the energy is
simply exchanged between the spin and the transla-
tional degrees of freedom during the spin-orbital
encounters. Also, simple estimates for the 3-dimen-
sional case (where the adiabatic condition ts vio-
lated) show that the probability of spin-flip (adia-
batic leakage) is still quite small for a given en-
counter, Now a remark about the geometric phase
and the dephasing due to magnetic impurities. In
the adiabatic limit the cyclic evolution of a spin-1/2
system in a Zeeman field is a unitary transfor-
mation, e.g. exp(iya,) exp(iy 0,) exp(ia o),
where a,B8 and y evolve successively, slowly
from zero to w/4. The Hamiltonian returns to the

original value in this limit. The system, however,
suffers a phase shift which is half the solid angle
(octant) subtended at the origin in the parameter
space of the Hamiltonian as predicted by the Berry-
Pancharatnam formula. This is precisely what
happens when the conduction electron spin suffers
rotation due to coupling with the magnetic impurity
spins. It is the non-commutativity of the rotations in
the parameter space that gives this effect as the
counter-propagating partial amplitudes visit the im-
purity spins tn opposite sequences. Adiabaticity just
provides a umque ‘connection’.

Finally, we must note that an exact treatment of
the scattering problem would of course, automati-
cally include the geometric as well as the dynamical
phase shift. It i1s, however; not clear if the perturba-
tive treatments of Hikami, Larkin and Nagaoka and
that of Maekawa and Fukuyama incorporate the
geometric phase shift (for references see ref. 9).
The point is that a2 dynamical treatment emphasizes
transition between states while the geometric phase
is associated with the adiabatic modification of the
initial state. Further work is needed to analyse this
point.

It can therefore be concluded that the Berry-
Pancharatnam phase has experimental consequen-
ces for weak localization in the presence of spin-
orbit coupling. Quartic-field and ¢;7?¢ concentra-
tion dependence for the dephasing time 7, is
predicted.
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