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ABSTRACT

The relevance of recent developments in nonlinear dynamical systems towards understanding
the onset of turbulence in open flows has often been questioned as the behaviour in all such
systems studied to-date is fundamentally different in several respects from that of strong
turbulence. In particular, such systems exhibit only slow chaos. which furthermore is not
persistent as the control parameter is continuously varied beyond the value critical for onset of
chaos. Based on physical considerations of the dynamics of interacting large and small eddies,
we devise here a nonlinear system which mimics the strong, fast turbulence characteristic of
open shear flows. revealing the possibility of establishing closer connections between dynamical

chaos and turbulence.

1. INTRODUCTION

RECENT developments in the theory of dynami-
cal systems exhibiting chaotic behaviour
(summarized for example in ref. 1) have raised the
question whether turbulence in flutd flows could be
understood as dynamical chaos. Several proposals
on possible routes to chaos have been made®~%, and
these have found some support from observations
in bounded flows such as convection in a box® or
Taylor-Couette flow®. However, the existence of
apy connection between the “dynamical chaos™
exhibited by such systems and turbulence in open
flows like boundary layers, jets, etc. has often been
questioned. It is generally felt*” that the chaotic
phenomena observed in dissipative systems gov-
erned by nonlinear ordinary differential equations
may be relevant only to the onset stage of turbu-
lence, i.e. to **weak’ turbulence.

More specifically, there are at least three issues
that need to be faced’.

(1) Chaotic dynamical systems do not exhibit a
strong cascade process, of the kind generally consi-
dered an essential feature of turbulence®, where
energy put in at low wave numbers or frequencies
produces strong fluctuations at very .high wave
numbers or frequencies. The spectrum in the
dynamical systems studied to-date (e.g. the Lorenz
equations®) tends to fill up at low (rather than high)
frequencies by period-doubling or other similar
mechanisms: i.e. the chaos s ‘slow’,

(i1} In fluid flows, especially those that are open
(e.g. boundary layers), the critical value of a control
parameter like the Reynolds number at onset of
turbulence is nof unigue (even for a given flow}, bat

depends strongly on environmental disturbance
levels'.

(iii) For values of the control parameter beyond
the critical value, turbulence invariably persists 1n
the flow, whereas in dynamical systems chaos and
order often alternate in narrow windows, and
indeed chaos eventually tends to disappear as the
control parameter is increased (once again, the
Lorenz system is a good example®).

The question that arises is whether the above
criticisms apply only to systems considered to-date
or whether other systems exist that more closely
mimic the essential characteristics of ‘strong’ flow
turbulence listed above. The present work i1s an
attempt to devise the simplest possible systems that

exhibit the generic behaviour of strong turbulence.

2. GENERAL CONSIDERATIONS

The 1dea underlying the present models is to treat
turbulent flow as interaction between motions at
different scales: the emphasis is not on any particu-
Jar flow such as that over a flat plate or behind a
cylinder, but rather on general physical arguments
valid for a wide class of turbulent flows. For this
purpose we divide spectral (or wave number) space
nto two broad regtons, one where nonlinearity and
external disturbances play the major role, represent-
ing the so-called large scale or large eddy motion,
and the other where viscous dissipation is dominant,
representing small or Kolmogorov scale motion.
These two scales are coupled by a nonlinear energy
transfer mechanism often called the cascade pro-
cess, schematically illustrated in figure 1 (see e.g.
discussion in reference 8).



GOR

Current Science, July 5, 1958, Vol. 57, No, I3

external
forcing

small eddy
motion

nonliner trangfer
{cascade)

large eddy
matwn U

Viscous
dissipation

Figure 1. Schematic diagram of energy processes in
a turbulent flow.

The first question to be faced 1s how many and
what type of equations should be considered.
Dynamical systems that exhibit chaos need at least
three degrees of freedom. Since the presence of
external disturbances is essential to reproduce
(1) above, their inclusion in the system provides
one degree of freedom. The simplest system for our
purpose would then consists of two coupled non-
linear ordinary differential equations subject to
forcing. Referring to figure 1, we introduce two
variables U and w, representing respectively large
and small eddy vanables. These variables may be
thought of as representing slowly varying velocity
amplitudes, the actual velocity being a linear com-
bination like

aU(t)exp iw t+ bu(t)exp i(wyt+ ¢), (1)

where a and b are weighting functions representing
the spread in wave number space of the concerned
motions, and w,, w; (® w,) are characteristic large
and small eddy frequencies. In adopting this
approach we make a significant departure from
earlier studies, typified by the Lorenz system, where
only the lowest few modes are selected for describ-
ing the dynamics,

Certain physical considerations may be used to
suggest possible forms for the model. We propose
that models that mimic turbulence should contain
the following features.

(1) The large scale variable U must be governed by
a control parameter that plays the role of Reynolds
number (denoted by R say), whose variation
changes overall system behaviour.

(it) There must be a critical value R. of this
parameter such that for R < R_the motion is stable,
and for R > R, the system exhibits linear instability,

(ii) For R > R,, the growth of U because of
linear instability will eventually be checked by
nonlineanty and saturate at some finite maximum at
high values of R.

Ay

(iv) The value of R at which onset of chaos will
occur, say R,, will in general be higher than K. and
depend on a forcing g(r) (which may be determi-
nistic).

(v} The small-eddy motion u will gain energy
from the large-eddy motion U by nonlinear interac-
tion.

(vi} Energy at the small scales is lost due 1o direct
VISCOUS action.

Several nonlinear models may be written down
that are generally consistent with the features listed
above. A typical form would be the following.

dUidt = «(R) U (UZ,(R)- U

(linear (saturation)
instability)
~ Ku? +q(t) (2)
(smali-eddy (external
damping)  disturbance)
dw/dt = kull + el ~ o{R*)u
gain from large eddy viscous
large eddies forcing dissipation

(3)

Each of the terms here has the physical significance
shown underneath. The second term in (2) repre-
sents the loss of large-eddy energy to small eddies.
The second term in (3) ensures that large-eddy
motion always forces some small-eddy motion
[otherwise u = 0 would always be one solution of
(3)]. In the last term represents viscous damping
that depends on a local Reynolds number R4, which
has to be distinguished from the large-scaie (or
overall) Reynolds number R. As Kolmogorov scale
motions always have a Reynolds number of order
unity’, we expect R, = O(1).

We shall discuss two models belonging to this
class, to explore whether such simple nonlinear
dynamical systems can be constructed, following the
above guidelines, to mimic the observed behaviour
of open shear flows.

3. SYSTEM 1

The equations proposed here are
dU/dt = Ul = v— U~ Ku’ + g(1), (4)
du/dt = kU(u+ )~ v, u, ()

where k and X represent nonlinear transfer coeffi-
cients. The parameter v in (4) plays the role of



Current Science, July 5, 1988, Vol. 57, No. 13

699

viscosity or inverse Reynolds number. The first term
in (4) is the nonlinear generation term which, for
v <1, enables U to grow when it is small but
saturates it at a value that depends on ». (Clearly
v = 1 corresponds to the critical Reynolds number
R..) For small v, viscous dissipation in U will be
neghgible, and v — 0 is like the limit -Reynolds
number —  in a flow. At the small scales, direct
viscous dissipation is always dominant, so the
parameter v, = O(1). To ensure that u will always
be excited in the presence of large-eddy motion, a
small multiple of U is included it (5) through the
parameter €.

Apart from forcing, the model has five para-
meters. To make things simpler we have put &k = K
in all cases, but this assumption is not crucial as we
shall show later. The parameter ¢ is assigned the
small value of 0.05 in all the present computations.
With these choices, only three parameters are left
open, 1.e. v, v, and k.

Extensive exploratory numerical studies using the
Iintegration code given in ref. 11 have been made of
the nature of the solutions of the system as the major
control parameter v is varied for different combina-
tions of k¥ and w.'*. It has been found that. to
preserve the general character of the solutions, in
particular in the allimportant “high Reynolds num-
ber” limit v — (} mentioned in (ii) of § 1, a special
relation between v, and k has to be obeyed. This
relation is approximately given by

v, = —0.050644 + 0.662272 k —-0.0367497 k?

(6)
for 1 =k = 3,
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Figure 2. Relation between & and v, that preserves
the general behaviour of Systems | and 2 in the limit
of vanishing large scale viscosity,

and is shown in figure 2: its significance in terms of
the singulanties of the system will be discussed
elsewhere. A relation of this type is not difficult to
understand physically: a balance between k and v,
ensures that dissipation equals energy transfer,
which in the Kolmogorov theory of turbulence is
achieved by an adjustment of the small scales of
motion.

To give a feel for the nature of the solutions as the
control parameter v is varied, we now present some
with k = 2.3 and v, = 1.28 (these values being,
consistent with (6)). External forcing is taken to be
periodic with

q(t) = G coswt. (7)

Time

w12 b 1. —t 1 R
0O 25 50 75 Time

Figure 3. U component of typical unforced and
forced solutions of System 1 as the control para-
meter v is changed, Other parameters are A = 2.3,
e = 005, v, = [.27956, w = 1.l. Note that even-
tually all forced solutions oscillate with negative
amplitudes.
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Figure 3 shows time traces of U with and without
external forcing. Unforced solutions tend to be
steady but non-zero when v 15 relatively large. As v
decreases, the system shows continuous oscillations
of increasing amphitude. However, for values of v
very close to 0, most solutions eventually tend to a
stcady (negative) state. When a small forcing is
apphed, the long ime behaviour of most solutions i1s
a forced periodic oscillation, with U remaining
negative {especially for ¢ < (0.3). However, with
non-negative forcing of large amplitude, 1t is possi-
ble to get chaotic solutions'%. The system however
does not have the destrable property that forcing
should frigger an mherent nstability in it. For this
reason further studies of the properties of System 1
are not described here.

4. SYSTEM 2
The equations considered here are
dU/dt = U(1 — v~ U?)— Kulu|+q (¢),
du/dt = kU(jul+¢) - v,u.

(8)
9)

Note the great similarity to System 1: the only
difference is that the absolute value sign has been
introduced at two places; this permits nonlinear
energy transfer from large to small eddies and vice
versa, depending on the sign of U and u. (It may be
noted here that in spite of the cascade process
already mentioned, no unique direction for turbu-
lent energy transfer in spectral space can be proved®:
it 1s likely that while such energy transfer can and
does take place in both directions, that from low to
high wave numbers is in general dominant.) Other-
wise the meaning of different terms and parameters
in (8}, (9) remains the same as in {4), (5), and as
before we have assumed k = K and ¢ = 0.05.

Also, as before, we fix the values k = 2.3,
v, = 1.28, and take the external forcing to be
periodic, Figure 4 shows typical unforced and forced
solutions. For v > (.125, the unforced solutions are
fixed points, and for v < 0.12 they are continuous
oscillations {limit cycles}, whose amplitude increases
as v — (.

The nature of the forced solutions depends upon
v, ¢ and w. When v is not very small (e.g. 0.25) only
periodic solutions are obtained for small forcing
amplitudes. As v decreases, the system becomes
sensitive to the forcing and chaotic-looking solutions
are obtained. The presence of chaos is inferred in
the present work by (a) the appearance of non-
repeating time series (visual observation), (b) de-
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Figure 4. U component of typical unforced and
forced solutions of System 2 as the control para-
meter » is varied. Other parameters are, & = 2.3,
£ =005 v,=127956, w=10. At » =025
forced solution s penodic while for v = 0.1 and 0,
solutions appear random.

caying correlation coefficients for farge time lags,
and (¢) wide-band spectra. From figure 4, it is seen
that the forced solutions at v =01 and v=90
appear to be nonrepeating, indicating chaos. The
increasing sensitiveness of the system response to
external forcing as v — O is brought out more clearly
in figure 5 where the correlation coefficients for
v =0 and v = 0.1 are plotted. The unforced solu-
tions show a correlation coefficient that returns to
unity periodically, indicating strong periodicity. The
forced solutions show a decaytng correlation coefti-
cient depending upon v and §. While the system is
chaotic at 4 = 0.0025 when » =0, it requires
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Figure 5. Autocorrelatlon coefficient of U of
System 2 with changing v and forcing. Fixed para-
meters are k = 2.3, ¢ = 0.05, v, = 1.27956. For
y=0.1,w=10and for v =0, w = 3.0. Autocor-
relation coefficient returning to unity means strong
periodicity; rapid decay in (¢) and (e) implies chaotic
behaviour. Note (e) is chaotic at very small forcing
amplitude. *

150 225 Time lag

g > 0.05 when v = 0.1. Figure 5 also shows that at
G = 1, the solution is again periodic but now at the
forcing frequency; this seems to be true for suffi-
ciently lmigh forcing at all ». A point to which
attentton must be drawn is that the forcang frequen-
cies used are different for v = 0 and 0.1, It was
found that the sensitivity of the system varies with
forcing frequency for any v; the values selected here
are 1 the frequency bands to which the system g
most sensitive,

Figure 6 shows spectra for two cases, Periodic
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Figure 6. Spectra of U of System 2. Number of data
points used is 4096 at a sampling time of 0.2.
Parameters are, & = 2.3, ¢ = (.05, v. = 1.27956,
g = 0.01, w = 3.4. While (a) shows narrow peaks
(b) has wide-band spectrum indicating chaotic
behaviour,

solutions are characterized by narrow band spectra
while chaotic solutions show broad-band spectra.

By varying g for a given v, it Is possible to map the
boundary between regular and chaotic behaviour.
Such a boundary, determined from examination of
time traces, correlations and spectra of U, is shown
in figure 7. An important feature of this diagram is
that as v— (O, the system becomes increasingly
sensitive to external disturbances, and even a very
small disturbance i1s enough to induce chaos. As v
increases, larger forces are required to trigeer chaos,
and there1s a hmit (v ~ 0.7, not shown in the figure)
peyond which there 1s no chaos at any forcing
amplitude and the system is in forced oscillation.
This behavioor is similar to the dependence of flow
tvype on  Reynolds number famibar in {laid
mechanics'?,

A more detailed mathematical study of System 2
will be reported separately.
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Figure 7. Rough boundary separating periodic from
chaotic regimes, Other parameters are k = 2.3,
¢ = 0.05, v, = 1.27956.

We conclude by showing, in figure 8, typical
samples of the complete velocity traces from a
linear combination of large- and small-eddy motions
as in (1); the resemblance to velocity fluctuations in
turbulent flow is evident.

CONCLUSIONS

We report here a new nonlinear dynamical system
which has many properties characteristic of open
shear flows. Chaos in this system is triggered by
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Figure 8. Three examples of actual velocity traces
using a linear combination of large- and small-eddy

motions as in (1), with a=0.5, b =1(.25,
w, = VIIN1LYY, (@ v=0, w=1, ¢=0.1:
wy =21 (byr=0, =385, g wy = 8.1,

)v=01w=1,4=01;, w, = 2.1.

(deterministic) forcing, whose values at onset of
chaos decrease with a viscosity-lhike parameter in the
model. This mimics the known dependence of
Reynolds number on environmental disturbance in a
boundary layer'’. Furthermore, chaos persists as the
viscosity tends to zero, i.e. in the high Reynolds limit.
Extremely high forcing, however, produces forced
oscillations. The model therefore promises to throw
much light on the nature of transition and turbulence
in open fluid flows, and may serve to establish
stronger connections between dynamical chaos and
flow turbulence.
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