EFFECT OF CALCITONIN HORMONE ON THE CALCIUM LEVEL IN GOAT LENS—IN VITRO STUDIES

V. K. SRIVASTAVA, S. K. SRIVASTAVA, J. P. SINGH and V. K. DAS*
Department of Chemistry, University of Gorakhpur, Gorakhpur 273 009, India.
* Department of Zoology, Kamla Nehru Institute of Science and Technology, Sultanpur 228 001, India.

ABSTRACT

Investigations conducted with goat lenses incubated in Ringers solution in the presence of calcitonin hormone indicate that calcitonin produced significant increase in lens calcium level. These results provide a new approach to an understanding of calcium metabolism of lens and its consequent implications in the development of cataract induced by hypocalcemia.

INTRODUCTION

Calcium plays diverse roles in living organisms. Besides being a major component of the skeleton, calcium has vital functions in body fluids and soft tissues\(^1\). Calcium has recently emerged as a pivotal agent in the regulation of lens transparency. Calcium metabolism has been associated with visual disturbances especially in crystalline lens\(^2\). Calcium level in the lens is moderately low initially, but an influx of calcium into the lens initiates biochemical events eventually leading to the formation of cataracts. The implication of calcium in cataract formation has been correlated with the consistent findings that its level is increased during aging and in senile cataract formation\(^3,4\).

Lenticular calcium homeostasis has been a subject of considerable interest because sodium and potassium imbalances in human cortical cataract is often accompanied by pronounced elevation of lens calcium level\(^5\). Lens can accumulate calcium levels far in excess of those present in the surrounding fluid environment\(^6\).

METHODS

Forty fresh goat eyes were collected from butcher shop and transported to the laboratory by keeping in an ice-box. Lenses from the eyes were dissected and weighed. The wet weight of the lenses ranged between 0.7 and 0.8 g. These lenses were divided in two groups (I & II). Group I of 20 lenses (control) was incubated separately, each in 5 ml Ringer solution (NaCl 111 mM; MgCl\(_2\) 2 mM; KCl 5 mM; glucose 5 mM; NaHCO\(_3\) 25 mM; CaCl\(_2\) 2 mM) and 0.1 ml solution containing NaCl (0.6%) with gelatine (0.1%) which served as vehicle for calcitonin. Group II of 20 lenses (experimental) each of which was also incubated separately in the same volume of Ringers solution with 0.1 ml solution containing 5 MRC (Medical Research Council) of porcine calcitonin (Armour Pharmaceutical Company Ltd., USA, Lot No. K 974-068) dissolved in aqueous 0.6% NaCl and gelatine (0.1%). After incubation for 0, 4, 8 and 12 h, five lenses from each control and experimental groups were removed and rolled on a filter paper wet with EGTA (1 mM) to remove calcium adhering to the lens. Lenses were then homogenized in 2 ml phosphate buffer (0.1 M, pH 7.4) and an equal volume of trichloroacetic acid (10%) was added to precipitate the protein. Calcium was determined from the supernatant (after centrifugation at 5000 rpm for 10 min) by the atomic absorption method.

The results reported are the mean ± standard error of the mean. Because of the variability in animals, lenses in all cases were paired for statistical analysis which was done using Student's \(t\) test\(^7\) for paired data. A confidence level of 95% or greater was considered to be significant.

RESULTS AND DISCUSSION

Figures 1 and 2 show that there is no apparent difference in the levels of calcium in unincubated lenses of control and experimental groups. However, after incubation, the level of calcium increased in lenses of the experimental group by 32%, 53% and 110% in 4, 8 and 12 h respectively. The results suggest that the increase in the lens calcium level is dependent upon the incubation time. Calcitonin thus evoked progressive hypercalcemia in goat lens.

The present results show that calcium level in the lens is maintained when cultured in a medium. However fortification of the culture medium with calcitonin induces a significant increase in calcium level in the lens after 4, 8, 12 h incubation periods. This is probably achieved by a chemical signal (calcitonin) mediated by a specific membrane recep-
Figure 1. Control.

Figure 2. Experimental.

culture medium is unknown. However, the present finding suggests the possibility of existence of specific receptors of calcitonin on lens membrane cells. Such specific receptors of calcitonin have earlier been identified to be present in kidney 11, bone 12, human lymphocyte and human bone 13.

ACKNOWLEDGEMENTS

The authors thank DST, New Delhi for financial assistance. The authors are grateful to Dr. R. J. Schlueter and J. W. Bastian, Armour Pharmaceutical Company, USA for the generous supply of natural porcine calcitonin.

16 June 1987; Revised 19 November 1987