Table 1 Diagnostic characters of species of Halophila

<table>
<thead>
<tr>
<th>H. ovalis</th>
<th>H. ovala</th>
<th>H. decipiens</th>
<th>H. supulacea</th>
<th>H. beccari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioecious</td>
<td>Dioecious</td>
<td>Monoecious</td>
<td>Dioecious</td>
<td>Dioecious</td>
</tr>
<tr>
<td>Leaves 2, oblong-elliptic, surface glabrous, 1-7 cm long: 1-2 cm wide, margin entire, intramarginal cross veins 10-12 pairs</td>
<td>Leaves 2, oblong-elliptic, glabrous; 7-14 mm long: 3-5 mm wide, margin entire, intramarginal cross veins 3-11 pairs</td>
<td>Leaves 2, oblong-elliptic, surface rough with stiff unceular hairs, margin finely serrulate, cross veins 4-9 pairs: 20-30 mm long and 6-10 mm wide</td>
<td>Leaves 2, linear to oblong, glabrous, papillose or slightly hairy; 3-6 cm long: 2½-8 mm wide, margin serrulate</td>
<td>Leaves 6-10 on erect shoot: lanceolate, glabrous; margin entire, 6-13 mm long: 1-2 mm wide, cross veins absent</td>
</tr>
<tr>
<td>Flowers unisexual</td>
<td>Flowers unisexual</td>
<td>Spathe encloses one male and one female flower</td>
<td>Flowers unisexual</td>
<td>Flowers unisexual</td>
</tr>
</tbody>
</table>

25 May 1987; Revised 14 October 1987

ALTERATION OF RIBULOSE BISPHOSPHATE CARBOXYLASE/OXYGENASE RATIO BY UREA

M. C. GHILDIYAL

Department of Agronomy, University of Illinois, Urbana, Illinois 61801, USA.

Present address: Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110 012, India.

Ribulose bisphosphate carboxylase/oxygenase (Rubisco) catalyses carboxylation and oxygenation of RuBP to initiate photosynthesis and photorepiration respectively. Carbon dioxide and oxygen are mutually competitive substrates in these reactions. Modification of enzyme reactivity towards its alternate substrate might enhance plant productivity. The question arises whether the activity of Rubisco can be modified. Efforts have been made to seek chemical agents which modify its activity. However, most of the apparent effects were the result of artifacts in the assay procedures used. The present study by utilizing a sensitive assay procedure indicates that urea decreases the carboxylase/oxygenase ratio.

RuBP carboxylase/oxygenase was purified from spinach following the method of Jordan and Oger. Purified enzyme was preincubated with 10 mM NaHCO\(_3\), 10 mM MgCl\(_2\) with 25 mM tris (pH 8) and 0.25 mM EDTA for 1 h at 20°C. Assays were initiated by adding 70 μg of activated protein in 25 μl to reaction mixtures at 25°C containing varying amounts (0.5, 1, 2, 5, 10 mM) of NaH\(^{14}\)CO\(_3\), 0.0236 mM H\(^3\)RuBP, 10 mM MgCl\(_2\), 50 mM Bicine at pH 7.85, with and without 2 M urea in a total volume of 0.5 ml. Reactions were performed in 6 ml scintillation vials which were sealed with serum stoppers. The reaction mixtures were flushed with pure oxygen for 15 min before adding NaH\(^{14}\)CO\(_3\) and enzyme. Reactions were terminated after 30 min by adding 0.1 ml of a solution containing 0.05 N HCl and 50 mM ZnSO\(_4\) and stored at −15°C.

Carboxylation and oxygenation rates were determined according to Jordan and Oger. The labelled products of carboxylation reaction \([^{14}\text{C},^{13}\text{C}]\) glycercate-P and the oxygenase reaction \([^{3}\text{H},^{1}\text{H}]\) glycercate-P were separated. Glycercate-P phosphatase was used to convert \([^{3}\text{H}]\) glycerolate-P to \([^{3}\text{H}]\) glycerate which was readily separated from labelled organic phosphates by ion exchange chromatography. Radioactivity in these compounds was quantified by scintillation spectroscopy. The ratio of RuBP carboxylase/oxygenase was determined by measuring the two activities simultaneously in the same reaction mixture. This procedure eliminates the possible discrepancy when two activities were measured separately under different conditions particularly at low CO\(_2\) concentration.

The ratio of carboxylase to oxygenase activity (vc/vo) plotted against the ratio of CO\(_2\) and O\(_2\) concentrations present during assay is shown in figure 1. The ratio increases with increase in the ratio of the CO\(_2\) and O\(_2\) concentrations. However, this ratio was lower when urea was included in the assay medium.
The substrate specificity factor, \(Vc \text{Ko/Vo Kc} \), determines the relative rates of two reactions at any given \(\text{CO}_2 \) and \(\text{O}_2 \) concentrations\(^1\). A high specificity value indicates a greater specificity for \(\text{CO}_2 \). Both the enzyme activities assayed simultaneously under several \((\text{CO}_2)/(\text{O}_2) \) values permit direct determination of the specificity factor. The specificity factor calculated from the slope of this plot was found to be 80. Similar values have been reported for other \(C_3 \) plants\(^2\). Urea treatment decreased the specificity factor to 50.

It has been argued that RuBP carboxylase/oxygenase cannot completely discriminate between \(\text{CO}_2 \) and \(\text{O}_2 \), so that photorespiration is unavoidable\(^3\). However, Rubisco enzyme from diverse species showed substantial differences in \(\text{CO}_2/\text{O}_2 \) specificity and that carboxylase/oxygenase ratio increased during the natural evolution of photosynthesis\(^4\). Furthermore, \(\text{Mn}^{2+} \)\(^5\), and temperature\(^6\) have been shown to alter the ratio of two activities. The present study indicates that urea also alters the carboxylase/oxygenase ratio.

The author is thankful to Prof. W. L. Ogren and Prof. G. S. Sirohi for facilities and encouragement. The fellowship received from FAO of the United Nations is gratefully acknowledged.

12 June 1987; Revised 24 August 1987

INHERITANCE OF PERICARP COLOUR IN RICE, ORYZA SATIVA LINN.

P. T. ANNIE and K. PAVITHRAN
Department of Botany, University of Calicut, Calicut 673 635, India.

Inheritance of pericarp colour in rice has been studied earlier and genetical ratios 3r:1w\(^1\)-\(^6\), 12p:3r:1w\(^4\), 9p:6b:1w\(^7\), 9p:3b:4w\(^8\)-\(^9\) and 15w:1r\(^10\)-\(^11\) have been reported. A genic scheme for pericarp colouration has also been proposed\(^12\). The present study reports the inheritance of purple pericarp.

Inheritance of purple pericarp was studied in Jaya \(\times \) 7019 and Jaya \(\times \) 7010 up to F\(_3\) generation. Jaya has white pericarp, 7019 and 7010 and the markers supplied by Dr Nelson E. Jodon of the USDA Louisiana, have purple pericarp.

\(F_1 \) showed purple pericarp (dominant) in both crosses and the \(F_2 \) population of 274 plants of Jaya \(\times \) 7019 segregated into 176 purple:98 white, giving a good fit to the ratio 162:94 with \(\chi^2 = 0.11 \); the \(F_2 \) population of Jaya \(\times \) 7010 segregated into 438 purple:148 white, giving a good fit to 3:1 with \(\chi^2 = 0.02 \) (table 1). The ratios were confirmed by the breeding behaviour of families in \(F_3 \) generation.

Out of 50 \(F_3 \) families of Jaya \(\times \) 7019 studied, 1 bred true for purple, 11 segregated for 3:1, and 11 for 9:7, 2 for 15:1, 1 for 27:37, 2 for 45:19, 2 for 54:10, 4 for 162:94 and 16 bred true for white pericarp, giving a good fit to the expected ratio with \(\chi^2 = 11.48 \) for 8 d.f., and out of 89 \(F_3 \) families of