trophotometric method measures the kinetics of single platelet recruitment into aggregates. There can be little doubt that the method is suitable for kinetic investigations into the mechanisms and modulations of interplatelet interactions. In this respect the spectrophotometric method is vastly superior to the conventional aggregometric method. The aggregometer apparently measures the clumping of primary aggregates and is not suitable for kinetic purposes.

We thank Mira Mohanty for helping in the microscopic experiments. This work was supported by a grant from DST, New Delhi.

11 November 1986

A SIMPLE AND ECONOMIC METHOD FOR LONG-TERM PRESERVATION OF MUSHROOM CULTURE

A. V. SATHE and SANGITA DIGHE

Maharashtra Association for the Cultivation of Science, Research Institute, Law College Road, Pune 411 004, India.

In an attempt to establish culture collection of mushrooms (Agaricales) from South India at this Institute, a simple and low cost method was developed for a long-term preservation of Oyster mushroom (*Pleurotus pulmonarius* (Fr.) Quél.) and the culture could be kept viable by this method at least for eight years, maintaining the same cultural characters.

This method is simple, economic, requiring minimum space, needs no cryostatic or low temperature arrangements and therefore, most suitable in tropical developing countries. The method is described below:

One ml liquid paraffin was dispensed in small-sized (9 × 75 mm) glass tubes (Corning make); were plugged with non-absorbant cotton; the mouths were covered by tin foil and the tubes were sterilized at 15 lb steam pressure for 15 min and then cooled to room temperature.

The petri plates showing actively growing cultures of mushroom were selected and circular agar punches (3 mm diam) were cut aseptically using sterilized cork borer. Three such agar punches with growing cultures were inoculated in the tubes prepared as in above, and the tin foil cover was replaced. The tubes were stored in a cupboard at room temperature. The cultures thus prepared were tested for their ability to survive after each year and were found to remain viable even after the lapse of eight years. The productivity of the preserved cultures was tested and compared with that of the freshly maintained cultures and both were found to be at par.

Of the other methods to preserve fungal cultures (including those of mushrooms), the liquid nitrogen storage method is very effective and cultures can be preserved in polypropylene straw ampoules¹, but it is considerably expensive and subjected to availability of liquid nitrogen.

The storage of fungal cultures in water² poses the problem of evaporation under tropical conditions and is, therefore, not suitable.

The proposed method, like the conventional method³, has the same survival rate i.e. minimum of eight years, and additionally has certain advantages. Firstly, the cost accrued is half that of the conventional method. Secondly, the space required for storage is much less than the former one. Thirdly, the productivity of the preserved culture is at par with that of the freshly maintained culture. It is, therefore, claimed that the method described here is the most suitable, simple and economic, but equally effective as the conventional one, for long-term preservation of mushroom cultures.

The authors are grateful to DST, New Delhi for financial assistance.
