A POSSIBLE MECHANISM FOR THE RECENTLY DISCOVERED HIGH TC SUPERCONDUCTORS

R. JAGADISH and K. P. SINHA*

Division of Physics and Mathematical Sciences, Indian Institute of Science, Bangalore 560 012, India.

ABSTRACT

A possible mechanism for high T_C superconductivity in the recently discovered systems ($\text{La}_{2-x}M_x\text{CuO}_4$, where M is Ba, Sr or Pb) is discussed. It involves virtual exchange of electronic excitations by pairing electrons.

The recent discovery of high T_c (~ 36 K or more) in doped lanthanum copper oxide systems (e.g. $La_{2-x}M_xCuO_4$, where M = Ba, Sr or Pb)1-4 has posed a theoretical challenge towards the possible mechanisms. The usual acoustic phonon-mediated pairing mechanism sets an upper limit of 28 K⁵. In the past, various equilibrium and non-equilibrium mechanisms involving phonons, excitons, plasmons etc have been suggested⁶⁻⁹. For oxides, the polarons and bipolarons have been invoked by many authors^{10, 11}. However, for understanding the mechanisms of high T_c in La_{2-x}M_xCuO₄ systems, we must note some special features of their structure¹². These systems have K2NiF4-type structure having planes of CuO6 octahedra which share corners. These planes are separated by (La, M) layers.

In the pure La₂CuO₄ (with copper in Cu²⁺ state, a Jahn-Teller ion) the structure has slight orthorhombic distortion. It is a semiconductor with low magnetic susceptibility (suggesting antiferromagnetic correlation). Further, LaSrCuO₄ is an insulator with Cu³⁺ ions in the diamagnetic state¹². This would suggest the abilization of the low spin state by the ligand incld (or on-site bipolaron formation). The metallic behaviour of La_{2-x}M_xCuO₄ is thus related to the presence of both Cu²⁺ and Cu³⁺ ions. The system is anisotropic in the sense that metallic behaviour occurs only in two dimensions, comprising planes of CuO₆ octahedra.

We visualize the following energy level diagram (for notation see ref. 13). The manifolds t_2^6 and e^2 ($3z^2-r^2$) are localized and σ^*

(derived from $e(x^2-y^2)$ and appropriate anion p orbitals) are itinerant but the band is very narrow. However, above the Fermi level (lying in the σ^* band) there are localized empty orbitals of La³⁺, M^{2+} ions and defects. This situation can lead to an additional pairing mechanism besides the usual phonon-induced superconductivity. For this we consider the Hamiltonian,

$$H = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} C_{\mathbf{k}\sigma}^{+} C_{\mathbf{k}\sigma} + \sum_{m\alpha\sigma} E_{m\alpha} C_{m\alpha\sigma}^{+} C_{m\alpha\sigma}$$

$$+ \sum_{m_{\alpha}m'_{\alpha},\mathbf{k}k'\sigma\sigma'} \left[g_{\mathbf{k}k'}^{m_{\alpha}m'_{\alpha}} C_{\mathbf{k}'\sigma}^{+} C_{\mathbf{k}\sigma} \right.$$

$$\times C_{m'_{\alpha},\sigma'}^{+} C_{m_{\alpha}\sigma'} + \text{h.c.}$$

$$+ H_{c} + H_{ph} + H_{int}(BCS), \qquad (1)$$

where $(C_{k\sigma}^+, C_{k\sigma})$ are creation and annihilation operators for conduction electrons in the Bloch state $|k\sigma\rangle$, having single particle energy ε_k , wave vector k and spin σ ; $(C_{m\alpha\sigma}^+, C_{m\alpha\sigma}^-)$ and $E_{m\alpha}$ represent the corresponding entities for localized states, α being the orbital index, and m the site index. The third term is the scattering of conduction electrons along with orbital transitions of the localized electrons; $g_{kk'}^{m_{\alpha}m'}$ is the corresponding matrix element. Further, H_c is the Coulomb interaction between conduction electrons, H_{ph} is the phonon Hamiltonian and H_{int} (BCS) is the BCS pairing interaction which is taken to be very weak for the present system.

The third term of equation (1) can be transformed using the standard method to yield a BCS type pairing interaction. We get

^{*} For correspondence

$$- \sum \frac{2 E_{m_{\alpha} m_{\alpha}^{*}} (g_{\mathbf{k}\mathbf{k}}^{m_{\alpha} m_{\alpha}^{*}})^{2} \langle n_{m\alpha\sigma} \rangle}{[E_{m_{\alpha} m_{\alpha}^{*}}^{2} - (\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}^{*}})^{2}]} \times C_{\mathbf{k}\uparrow}^{+} C_{-\mathbf{k}\downarrow}^{+} C_{-\mathbf{k}\downarrow} C_{\mathbf{k}\uparrow}, \qquad (2)$$

where
$$E_{m_{n}m_{n}'} = E_{m_{n}'} - E_{m_{n}} > 0$$
,

and $\langle n_{m\alpha\sigma} \rangle$ is the occupation number of the localized occupied states. As $(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}'}) \ll E_{m_{\alpha}m_{\alpha}'}$, the pairing interaction is attractive by this mechanism also. In this limit the interaction is

$$-\sum \frac{2(g_{\mathbf{k}\mathbf{k}'}^{m_{\alpha}m_{\alpha'}'})^{2}}{E_{m_{\alpha}m_{\alpha'}'}}C_{\mathbf{k}'\uparrow}^{+}C_{\mathbf{k}'\downarrow}C_{\mathbf{k}\downarrow}C_{\mathbf{k}\uparrow}, \quad (3)$$

where we have taken $\langle n_{m\alpha\sigma} \rangle = 1$. We expect $\langle E_{m_{\alpha}m'_{\alpha}} \rangle \sim 0.5$ to 1 eV and

$$\langle 2(g_{\mathbf{k}\mathbf{k}'}^{m_{\alpha}m'_{\alpha}})^2/E_{m_{\alpha}m'_{\alpha}}\rangle \equiv V_{\mathrm{el}}$$

exchange integral of the order of 0.1 eV. Owing to the two-dimensional nature of the band, the density of electronic states $N(\varepsilon)$ is likely to have logarithmic singularity. If the peak lies near the Fermi level, it will yield an effective $\lambda_{\rm el} = N({\rm O})V_{\rm el}$, to be sufficiently strong say in the range 0.5 to 1. The expression for the superconducting temperature T_c from this mechanism is similar to the exciton mechanism. It will have the form

$$T_c \sim \theta_{\rm el} \exp \left[-\frac{1+\lambda_{el}}{\lambda_{el}-\mu^* (1+\lambda_{el})} \right],$$
 (5)

where $\theta_{\rm el} \equiv \langle E_{m_{\alpha}m_{\alpha}'} \rangle/k_B$. It will be in the range of 10^3 to 10^4 K. With the Coulomb parameter μ^* around 0.1, T_c can easily reach 10^2 K or more with this mechanism.

In the present paper, we have discussed an electronic mechanism for the high T_c superconductors. The role of strong electron-phonon interaction has been taken to produce local

splitting of e_g electronic states (at Cu^{2+}) and bipolaron formation at Cu^{3+} (onsite). It also reduces the intersite Coulomb interaction. The systems in question lie near metal insulator transitions arising from J-T polaron formation. The systems also show further structural instabilities, namely, from tetragonal to orthorhombic distortion when it is richer in Cu^{2+} ions. That such instabilities exist in the incipient state in the M^{2+} ion stabilized tetragonal phase can lead to yet another mechanism for high T_c superconductivity and will be discussed in another paper.

A model of a resonating valence band superconductor has also been suggested¹⁵.

13 February 1987

- 1. Bednorz, J. G. and Müller, K. A., Z. Phys., 1986, 64, 189.
- 2. Uchida, S., Takagi, H., Kitazawa, K. and Tanaka, S., Jpn. J. Appl. Phys., 1987, 26, L1.
- Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J. and Wang Y. Q., Phys. Rev. Lett., 1987, 58, 405.
- 4. Cava, R. J., Van Dover, R. B., Batlogg, B. and Rietman, E. A., Phys. Rev. Lett., 1987, 58, 408.
- 5. McMillan, W. L., Phys. Rev., 1968, 167, 331.
- Kumar, N. and Sinha, K. P., Phys. Rev.., 1968,
 174, 482.
- 7. Ginzburg, V. L. and Kirzhnits, D. A., (eds), High temperature superconductivity, Consultants Bureau, New York, 1982.
- 8. Sinha, K. P., Indian J. Cryogen, 1978, 3, 181.
- 9. Sinha, K. P., J. Low. Temp. Phys., 1980, 39, 1.
- 10. Chakraverty, B. K., J. Phys. (Paris) Lett., 1979, 40, L99.
- Alexandrov, A. and Ranninger, J. J. Phys. Rev., 1981, **B24**, 1164.
- 12. Rao, C. N. R. and Ganguly, P., Curr. Sci., 1987, 56, 47.
- 13. Goodenough, J. B., In: Progress in solid state chemistry, (ed) H. Reiss. Pergamon Press, 1971. Chapter 4, Vol. 5.
- 14. Schrieffer, J. R., J. Appl. Phys., 1967, 38, 1143.
- 15. Anderson, P. W., (Preprint).