SHORT COMMUNICATIONS

MOLECULAR FORCE FIELD—PARAMETRIC APPROACH

S. MOHAN, T. J. BHOOPATHY* and ASHA SELVARAJ
Division of Applied Sciences, Anna University, Madras Institute of Technology, Madras 600 044, India.
*Department of Physics, Pachaiyappa’s College, Madras 600 030, India.

The force field study of some XY₃(Cᵥ) type molecules has been attempted using the parametric representation method. Experimental data such as rotation-vibration coupling constants have been used to evaluate the best fit force field. The symmetrized force constants evaluated for these molecules agree quite well with the values reported in the literature. Further, the centrifugal distortion constants have also been calculated and compared with observed values.

The determination of symmetry force constants from the vibrational frequencies alone is a mathematically undetermined problem. This is so because nᵣ vibrational frequencies of a given species are not sufficient for estimating the nᵣ(nᵣ + 1)/2 force constant elements Fᵣᵣ in general. In the parametric approach the additional nᵣ(nᵣ - 1)/2 data for the determination of force constants are imposed on the parameter matrix which may be expressed in terms of trigonometrical functions of angle parameters. A simple method to evaluate the force field for some pyramidal XY₃(Cᵥ) molecules by the method of parametric representation using rotation-vibration coupling constants as additional data are presented here for the first time.

The symmetry coordinates S and the normal coordinates Q in molecules are related through the relation, S = LQ where L is the normal coordinate transformation matrix. The significance of the matrix L is that many molecular properties can be expressed in terms of its elements. The relations like F = \bar{L}^{-1}L, Σ = \bar{L}DL and ζ = \bar{L}^{-1}Ca \bar{L}⁻¹ are well known. The F, Σ and ζ matrices, in the above equations stand for the symmetry force constants¹, the symmetrized mean square amplitudes² and the Coriolis coupling coefficients³ respectively. Therefore, if the elements of matrix L are known, the force constants may be directly computed from the vibrational frequencies of the molecule.

In the parametric method, the transformation matrix L is written as, L = L₀A where A is an orthogonal matrix. Thus, F = \bar{L}^{-1}A \bar{A} \bar{L}⁻¹. The matrix L₀ is a triangular matrix and its elements can be obtained from L₀\bar{L}₀ = G. The orthogonal matrix A consists of only one parameter a. In the 2 × 2 vibrational problem,

$$A = (1 + a^2)^{-1/2} \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix}$$

where a = −tan φ; φ is the angle parameter. The expression for Coriolis coupling constant is also written as,

$$\xi^a = \bar{A}L₀⁻¹CaL₀⁻¹A,$

where C₀ are Coriolis matrix elements³ which may be evaluated using the geometry of molecule. The matrix A elements are determined with the help of experimentally observable Coriolis coupling values.

According to Jahn's rule⁴ for pyramidal XY₃ molecules, the Coriolis coupling constants ξᵣᵣ(α = X, Y, Z) arise from $A_1\times E$ (second order) and $E\times E$ (first order) couplings. The ξ₃₃ and ξ₄₄ values corresponding to $E\times E$ coupling and the ξ₁₁ value corresponding to $A_1\times E$ coupling are experimentally available. Taking the available experimental values of ξ₀, the matrix A can be computed. The detailed procedure of determination of the values of A has been described elsewhere⁵-⁷. Using the values of A, thus determined the symmetrized force constants F are determined. Using the set of potential constants obtained in the present study, the centrifugal distortion constants have been evaluated.

In the present work, NH₃, ND₃ and NT₃ molecules have been chosen to verify the validity of the method described above. The structural parameters, vibrational frequencies and observed Coriolis coupling values are taken from literature⁸-¹⁴. The values of a and the best fit F matrix evaluated in this investigation are presented in table 1. The values of F elements obtained by the present method agree quite well with the literature values¹⁴, thus proving the validity of using Coriolis coupling constants to fix the force field. In view of Herzberg's statement¹⁵ viz 'since the isotopic molecules have the same electronic structure, the potential function under the influence of which the nuclei are moving is the same...
Table 1 The a values and symmetrized force constants (102 Nm$^{-1}$)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>$a(A_4)$</th>
<th>$a(E)$</th>
<th>$F_{11}(A_4)$</th>
<th>$F_{22}(A_4)$</th>
<th>$F_{12}(A_4)$</th>
<th>$F_{23}(E)$</th>
<th>$F_{44}(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$</td>
<td>-0.0700</td>
<td>0.0245</td>
<td>7.1147</td>
<td>0.2318</td>
<td>0.2092</td>
<td>6.9779</td>
<td>0.3328</td>
</tr>
<tr>
<td>ND$_3$</td>
<td>-0.1300</td>
<td>-0.0904</td>
<td>7.0709</td>
<td>0.2660</td>
<td>0.2175</td>
<td>7.0559</td>
<td>0.3316</td>
</tr>
<tr>
<td>NT$_3$</td>
<td>-0.0345</td>
<td>0.0007</td>
<td>7.2039</td>
<td>0.2407</td>
<td>0.1968</td>
<td>6.8154</td>
<td>0.3300</td>
</tr>
</tbody>
</table>

Table 2 Centrifugal distortion constants (MHz)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>D_J</th>
<th>$-D_{JK}$</th>
<th>D_K</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$</td>
<td>24.0210</td>
<td>43.9950</td>
<td>22.4321</td>
<td>PW</td>
</tr>
<tr>
<td></td>
<td>24.2700</td>
<td>43.6500</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>24.3100</td>
<td>45.2700</td>
<td>—</td>
<td>16</td>
</tr>
<tr>
<td>ND$_3$</td>
<td>5.8322</td>
<td>10.8921</td>
<td>4.8212</td>
<td>PW</td>
</tr>
<tr>
<td></td>
<td>5.8500</td>
<td>10.9800</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5.9100</td>
<td>10.4900</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td>NT$_3$</td>
<td>2.5802</td>
<td>4.4092</td>
<td>2.0481</td>
<td>PW</td>
</tr>
<tr>
<td></td>
<td>2.5981</td>
<td>4.4720</td>
<td>—</td>
<td>18</td>
</tr>
</tbody>
</table>

The high degree of approximation, it is significant to note that the numerical values of the symmetrized force constants for the three isotopically substituted ammonia molecules are close to each other. Using the set of potential constants, derived here, the centrifugal distortion constants for these cases have been evaluated. In Table 2, the evaluated values are compared with the observed values.

The close agreement between the calculated and observed values of centrifugal distortion constants brings out the validity of the method of parametric representation described in this note.

One of the authors (TJB) is thankful to UGC, New Delhi for the financial assistance.

7 February 1986; Revised 25 August 1986

LECTIN-IMMobilIZED ALBUMINATED POLYETHYl E URETHANE UREA: TISSUE COMPATIBILITY

K. RATHINAM and CHANDRA P. SHARMA
BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012, India.

It was known1 that the cell growth is normal on albuminated substrates and was that lectins are