THE PLEUROPODIUM IN THE EMBRYOS OF TWO SPECIES OF VIVIPAROUS SPOROPHAGOUS SPECIES OF TUBULIFERAN THRIPS (THYSANOPTERA : INSECTA)

K. DHILEEPAN and T. N. ANANTHAKRISHNAN
Entomology Research Institute, Loyola College, Madras 600 034, India.

OBSERVATIONS on the presence of developing embryo in the genital tract of viviparous species of Tubulifera are on record1–12, but without adequate structural details regarding the nature of embryogenesis and the incidence of specialized nutritional structures to support the occurrence of viviparity in the respective species. Information presented here relates to some aspects of development of the viviparous/ovoviviparous individuals of \textit{Tiarothrips subramanii} (Ramk) and \textit{Elaphrothrips denticollis} Priesner with particular reference to the development of a special pseudoplacenta called 'Pleuropodium' during later stages of embryonic development.

Embryogenesis in typical oviparous species is initiated only subsequent to the laying of fully mature eggs with adequate yolk reserves. In the ovoviviparous ovaries, mature oocytes in partly yolk-accumulated condition ovulate into the lateral oviduct, where the development of the embryo continues up to blastokinesis. There is a positive correlation between the increase in the size of the embryos in the lateral oviducts and the distance traversed by the embryos in the lateral oviducts. This correlation suggests a quantitative increase in the size of the embryo as it descends down the lateral oviducts. The remaining embryonic development takes place after they are laid. In viviparous ovaries the yolkless pre-vitellogenic oocytes ovulate into the lateral oviduct where complete embryonic development occurs with the subsequent emergence of fully developed larvae. A histological picture of the lateral oviducts with developing embryos (figure 1) indicates the presence of a large number of embryos in various stages of development, more so towards the region of the lateral oviduct which opens into the common oviduct. A statistically significant, proportionate increase in the size of the embryos is also evident as they descend down in the lateral oviduct.

In the viviparous individuals of \textit{T. subramanii} and \textit{E. denticollis}, embryos develop within the lateral oviducts and a part of the nourishment for their development is obtained through the development of a specialized pseudoplacenta called 'Pleuropodium' during the later stages of embryonic development (figures 2 A–E). These pleuropodia are very similar to those described in \textit{Hemimerus} sp, and members of family Polycyrtidae13, 14.

The pleuropodium is a persisting first abdominal segment, ectodermal in origin. The blunt, distal and projects beyond the body wall of the embryo and the proximal end projects inwards into the midline of the embryo. They are bulbous in shape with all the pleuropodial nuclei distributed at their inner margins. No nuclei can be distinguished in the distal projecting region of the pleuropodium. Moreover, no serosa intervenes between the embryo and the wall of the maternal oviduct, and embryo lies free in the lateral oviduct. During the embryonic development, the distal free margin of the pleuropodium on either side, spreads out completely surrounding the whole embryo, to form the pleuropodial sheath. The pleuropodium is only the part of the developing embryo to utilize the available nutrients from the maternal resource at its later stage of development.

In both complete ovoviviparous and viviparous ovaries, the lateral oviduct wall is without any secretory cells and is stretched into a thin membrane. The developing embryos without chorionic covering lie close to the wall of the lateral oviducts and derive nutrients through thin membranous part. Haga11 also reported a similar thin and transparent lateral and common oviductal wall in ovoviviparous \textit{B. brevitubus}. Studies on the embryogenesis indicated the presence of the pleuropodium only at a later stage in \textit{Bactrothrips buffai} embryos9. Their possible role in nourishing the embryo was suggested only in the viviparous insect like \textit{Hesperotenes fumarius} Westwood by Jordan15–17, and Hagan13, 14. In ovoviviparous forms, the nourishment of the embryo in the lateral oviduct is exclusively through direct absorption. As is the case with the embryos attaining an advance stage of
Figure 1. Embryonic development in viviparous *Tiarothrips subramanii*. A. L. S. of proximal end of the lateral oviduct with the embryos at initial stages of development (× 133); B. Enlarged view of the early stage viviparous embryo (× 320); C. L. S. of the embryo showing blastoderm formation (× 400); D. L. S. of embryo at an early stage of organogenesis (× 352); E. L. S. of the embryo with completed organogenesis (× 536); F. L. S. of the fully developed larvae at the proximal end of the lateral oviduct (× 115).

development, the increased nutritional requirements are supplemented by the development of pleuropodia. Moreover, the role of pleuropodia in respiration and excretion of embryos cannot be overlooked as indicated by Hagan14.

21 May 1986
Figure 2. Pleuropodia in some viviparous Mycophagous Tubulifera. A. L. S. of the lateral oviduct showing the embryo with pleuropodium attached to the lateral oviduct wall of Tiarothrips subramanii (× 112); B. Early stage of pleuropodium formation in T. subramanii (× 240); C and D. Enlarged view of pleuropodium in T. subramanii (× 752) and (× 272); E. Viviparous embryo of Elaphrothrips denticolis showing pleuropodium (× 272).
ANNOUNCEMENT

NEW MATERIALS AND THEIR APPLICATIONS — 22-25 SEPTEMBER 1987

The Institute of Physics is arranging a conference on New Materials and their Applications at the University of Warwick from 22-25 September 1987.

The conference is being organized in collaboration with the following co-sponsoring bodies: British National Committee for NDT; British Institute of NDT; British Cryogenics Council; The Institute of Acoustics; The Institution of Electrical Engineers; The Institute of Ceramics; The Institution of Civil Engineers; The Institute of Metals; The Plastics & Rubber Institute; The Society of Glass Technology.

The aim of the conference will be to provide a forum for scientists and technologists concerned with new ideas and areas of applications in the field of materials. The conference will appeal to those in both the industrial and academic sectors involved in the understanding of materials in relation to their design, manufacture and applications. The topics to be included in the programme are:- Advanced materials; Joining of materials; Microstructure & its relationship to properties; Interfacing of materials (including tribology and lubrication); Materials forming techniques; Materials in a hostile environment; Materials characterisation, including NDT; Electrical, electronic, magnetic, acoustic and optical properties; Health and safety aspects of materials, with the emphasis on the physical properties and the physics of applications.

A wide range of speakers have been invited to present review papers at the conference; these include Professors A Challis, D Birchell (ICI), D H Bowen (AERE Harwell), D Chistaifar (Metglas), F N Cogswell (ICI), Professor A Csucs (Leeds University), Professor C H L Goodman (STL), F L Matthews (Imperial College), B Partridge (GEC), Professor A Vardy (Dundee University).

Contributed papers are invited on the topics listed above or on any other area within the general theme of the conference. Offers of papers with 2 copies of abstracts (300 words) on one side of A4 paper, should be sent on or before 16 MARCH 1987 to Dr S G Burnay CPhys MInstP, B149, AERE Harwell, Didcot, Oxon OX11 ORA. It is intended that the Proceedings of the Conference shall be published in The Institute of Physics Conference Series.

An Exhibition of instruments and apparatus will be organized in conjunction with the conference.

Further details about the Conference and Exhibition may be obtained from the Meetings Officer, The Institute of Physics, 47 Belgrave Square, London SW1X 8QX.