DEVELOPMENT OF GAMETOPHYTES IN BIGNONIA INCARNATA AUBL

D. R. SHIRKE
Department of Botany, University of Poona,
Pune 411007, India.

BIGNONIACEAE is a large family and literature on embryology is scanty. Davis\(^1\) mentioned the embryological work of *Bignonia megapotamica*, *Jacaranda*, *Tecoma* and *Oroxylum indicum*. Shirke\(^2\) described the embryogeny of *Spathodea campanulata*. The present work was undertaken to understand the locally available members of Bignoniaceae.

In antherlobe, one of the hypodermal cells is differentiated as an archesporial initial and it divides and forms sporogenous tissue (figure 1). The cells are ploygonal when young but become poly to hexagonal later. Division in the PMC is of successive type, with the haploid chromosome number, \(n = 20\) (figure 2). A mature pollen grain is tricolpate (figure 3). Ovules are unigemis, tenuinucellate and anatropous. Archesporium directly acts as a megaspore mother cell (figures 4 and 5). Degeneration of nucellar cells is greater at chalazal region. Nucleus of MMC starts dividing and undergoes synizeisis, forming dyad; followed by a second transverse division resulting in T-shaped tetrad (figure 6). The chalazal megaspore is functional and gives rise to mature embryo sac. Functional megaspore cell enlarges, cytoplasm becomes vacuolated, its nucleus divides resulting in two-nucleate stage (figure 7). Two nuclei are situated at the centre with a vacuole on either side. The next division forms a four-nucleate stage (figure 8). The third division results in eight-nucleate embryo sac (figures 9 and 10). In a mature embryo sac the chalazal and micropylar polar nuclei move and fuse, forming a secondary nucleus. Development of female gametophyte conforms to the monosporic, eight-nucleate, polygonum type and well compared with the work of Swamy\(^3\).

10 February 1986; Revised 25 March 1986


---

Figures 3, 4. 3. Mature conidia. 4. Phialides with young developing conidia.

is by irregular, stellate rupture of the upper wall of the pycnidium. The fungus was collected on leaves of *Calophyllum inophyllum* for three consecutive years in the same season. This shows that this Coelomycetous fungus plays an important role in the decomposition of tropical leaf litter.


The author is grateful to Prof. C. V. Subramanian, for his encouragement and to UGC for financial assistance.

16 November 1985; Revised 31 March 1986

---